Kentucky Transportation Center

College of Engineering

ANALYSIS OF TRAFFIC GROWTH RATES

Our Mission

We provide services to the transportation community through research, technology transfer and education. We create and participate in partnerships to promote safe and effective transportation systems.

We Value...

Teamwork -- Listening and Communicating, Along with Courtesy and Respect for Others Honesty and Ethical Behavior Delivering the Highest Quality Products and Services Continuous Improvement in All That We Do

For more information or a complete publication list, contact us at:

KENTUCKY TRANSPORTATION CENTER

176 Raymond Building University of Kentucky Lexington, Kentucky 40506-0281

> (859) 257-4513 (859) 257-1815 (FAX) 1-800-432-0719 www.engr.uky.edu/ktc ktc@engr.uky.edu

The University of Kentucky is an Equal Opportunity Organization

Research Report KTC-01-15/SPR213-00-1F

ANALYSIS OF TRAFFIC GROWTH RATES

by

Monica L. Barrett R. Clark Graves David L. Allen Jerry G. Pigman

Kentucky Transportation Center

Ghassan Abu-Lebdeh Lisa Aultman-Hall Sarah T. Bowling

Department of Civil Engineering

College of Engineering University of Kentucky Lexington, Kentucky

in cooperation with

Kentucky Transportation Cabinet Commonwealth of Kentucky

and

Federal Highway Administration U.S. Department of Transportation

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky, the Kentucky Transportation Cabinet, or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. The inclusion of manufacturer names and trade names is for identification purposes, and is not considered an endorsement.

August 2001

1. Report Number KTC-01-15 / SPR213-00-1F	2. Government Acce	sion No. 3. Recipient's Catalog No.			
4. Title and Subtitle Analysis of Traffi	5.	5. Report Date August 2001			
		6.	Performing Organization	on Code	
7. Author(s) D.L. Allen, M. L. Barrett, R. G G. Abu-Lebdeh, L. Aultman-I		n, 8.	Performing Organization KTC-01-15 / SPR		
9. Performing Organization Name and	Address	10.	Work Unit No.		
Kentucky Transp College of E University of Lexington, Kentuc	ngineering Kentucky	11.	Contract or Grant No.		
12. Sponsoring Agency Name and Add Kentucky Transpo		13.	Type of Report and Per Final	riod Covered	
State Office Frankfort, Kent	Building	14.	14. Sponsoring Agency Code		
16. Abstract The primary objectives of this traffic composition and highway type f literature search to determine if there w development of a random sampling pro- vehicle miles traveled based on socioed magnitude of traffic volumes on routes growth rates based on procedures to ess Results produced a random sa effort to model traffic growth at the con- effort required to estimate traffic volum	or Kentucky's system yere new procedures be ocedure for collecting t conomic data, 4) devel functionally classified timate or model trends mpling procedure for t unty level in Kentucky nes on local roads by d	ne patterns of traffic of highways. Addition ing used to more accorraffic count data on le opment of a procedum as collectors and loc in vehicle miles trav raffic counting on loc . Promising results we evelopment of a relation	flow and develop traffic onal subtasks included t urately represent traffic ocal roads and streets, 3 e for explaining the rela als, and 5) developmen eled and average daily t cal roads which were us vere produced to minimi- ionship between functio	he following: 1) a growth rates, 2) () prediction of ationship and t of county-level raffic. ed as part of the ize the level of onally classified	
collector roads and local roads. Both rebetween local and collector roads. Coursed to represent changes in ADT to prive Networks models were developed in an	inty-level growth rates oduce county-level gro	in traffic volumes we owth rates by function	ere analyzed and linear anal class. Linear regress	regression was sion and Neural	
17. Key WordsVolume EstimatesNeural NetRegression AnalysisLocal RoadRandom SamplingVehicle Miles Traveled (VMT) Est		18. Distribution Sta Unlimited, wit Transportation C	h approval of	the Kentucky	
19. Security Classification (report) Unclassified20. Security Classification (this page) Unclassified21. No. of Pages 15822. Price					

List o	of Figure	es	iii
List o	of Table	S	V
Exec	utive Su	ımmary	vii
Ackn	lowledg	ments	ix
1.0	Back	ground and Objectives	1
2.0	Revie	ew of Literature and Survey of States	2
	2.1	Review of Literature	2
	2.2	Survey of States	5
3.0	Devel	lopment of a Random Sampling Procedure	
		ocal Road Traffic Count Locations	5
	3.1	Introduction	5
	3.2	Other Efforts to Estimate Local Road VMT	7
	3.3	The GIS Grid-Based Sampling Methodology	
	0.0	3.3.1 The Challenges of Finding a Methodology	
		3.3.2 Creating the Point-like Sections for Three Study Areas	
	3.4	Consideration of Bias in the Point-like Sections	
	3.5	Conclusions	
	3.6	Local Road ADT Sample with Spatial Variables	
	3.7	Local Road Traffic Volume Summary	20
	3.8	Regression Analysis to Predict Local Road ADT	
4.0	Predic	ction of VMT Based on Socioeconomic Data	26
т.0	4.1	Introduction	
	4.1	Background	
	4.3	Objective	
	4.3 4.4	5	
	4.4	Data Input	
	45	4.4.1 Data Measures of Quality	
	4.5	Methodology	
		4.5.1 Regression Modeling	
	1 6	4.5.2 Neural Networks (NNets) Modeling	
	4.6	Results	
		4.6.1 Descriptive Summary of All Trials and Results	
	4.7	Final Models	
		4.7.1 Non-Interstate VMT	
		4.7.2 Interstate VMT	
	4.8	Discussion	
	4.9	Conclusion	
	4.10	Recommendations	

TABLE OF CONTENTS

5.0	Deve	elopment of Ratios for Relationship Between Collectors and Local Roads	
	5.1	Local to Collector Ratio Analysis	
	5.2	Data Analysis	
	5.3	2000 Local Sample	
6.0	Deve	elopment of County-Level Growth Rates	61
	6.1	Growth Rate Development	61
	6.2	Statewide Functional Class Averages	
	6.3	Interstate Corridor Analysis	66
7.0	Refe	rences	67
8.0	Appe	endices	
	8.1	Appendix A – Kentucky Year 2020 VMT Forecast Procedures	
	8.2	Appendix B – State Survey Results	
	8.3	Appendix C – VMT From Historical KYTC Data Files (1993-1999)	105
	8.4	Appendix D – Socioeconomic Census-Based Data	109
	8.5	Appendix E – Traffic Volume System (TVS) Estimating Procedure	
	8.6	Appendix F – Weighted County Level Functional Class Growth Rates	117
	8.7	Appendix G – Unweighted County Level Functional Class Growth Rates	129
	8.8	Appendix H - Corridor Interstate Growth Rates	141

LIST OF FIGURES

1.	A "Cookie Cutter" Grid on a Network of Roads
2.	Bias Analysis for Pike County (0.20 mile grid)12
3.	Pike County Weights16
4.	Counties Used in Local Road ADT Data Collection
5.	Major Highways Used in Distance Calculation
6.	Cities Used in Distance Calculation
7.	Prediction of State VMT (combined interstate and non-interstate VMT)
8.	Distribution of Observation Error Over The Error Range (interstate and non-interstate VMT combined)
9.	Distribution of Non-Interstate VMT Prediction Error Over Error Range
10.	Distribution of Interstate VMT Prediction Error Over Error Range
11.	Distribution of Prediction Error over the Error Range (non-interstate VMT)
12.	Projected Increase in Non-Interstate VMT between 1999 and 2000 as a Percentage of 1999 VMT
13.	Distribution of Prediction Error over the Error Range (interstate VMT)(1993-1999 data)41
14.	Projected Increase in Interstate VMT between 1999 and 2000 as a Percentage of 1999 VMT
15.	A Sample of Corridor-Based VMT Models
	a. Comparison of Actual and Predicted VMT – Training Data (Interstate 75 Corridor)44 b. Comparison of Actual and Predicted VMT – Testing Data (Interstate 75 Corridor)45
17.	Relationship between Change in Interstate VMT and Retail Sales (Interstate 24 Corridor)46
18.	Relationship between Change in Interstate VMT and Retail Sales (Interstate 64 Corridor)47
19.	Variation of VMT over Time for Selected Counties (VMT figures are in thousands)
20.	Distribution of Yearly Interstate VMT

21. Distribution of Yearly Non-Interstate VMT	50
22. Comparison of Functional Class Ratios	54
23. Non-Urbanized Counties Functional Class Ratio FC 09/08	55
24. Urbanized Counties Functional Class Ratio FC 09/08	55
25. All Counties Functional Class Ratio FC 19/17	56
26. Comparison of Collector ADT and Local ADT	58
27. Comparison of Predictive Relationships	60
28. Allen County Functional Class 06 Traffic Monitoring Stations	62
29. Average Annual Functional Class 06 ADT for Allen County	62
30. Statewide Unweighted Average ADT for Functional Class 01 and 11	64
31. Statewide Unweighted Average ADT for Rural Functional Classes	65
32. Statewide Unweighted Average ADT for Urban Functional Classes	65

LIST OF TABLES

1.	Y-Intercept, R-Squared, and X ² Coefficient
2.	Slope Comparison
3.	Corrected and Uncorrected ADT and VMT Values (0.2 mile grid-based sample)16
4.	Local Road ADT Sample Locations by County
5.	Local Rural Road ADT Summary
6.	Local Urban Road ADT Summary
7.	Regression Results for County-Level Variables
8.	Urban ADT R-Squared Regression Results for Spatial Variables25
9.	Rural ADT R-Squared Regression Results for Spatial Variables
10.	Socioeconomic Variables Used
11.	Correlation Matrix (using data from all counties for 1993-1999)
12.	Percent Error at the County Level (based on state-wide models)
13.	Historical Functional Class Ratios
14.	Average FC 08 and FC 09 ADT for 2000 Local Sample Counties57
15.	Average FC 17 and FC 19 ADT for 2000 Local Sample Counties
16.	Summary of Statewide County Level Functional Classification Growth Rates63
17.	Summary of Statewide Functional Class Growth Rates
18.	Interstate Corridor Weighted ADT Growth

EXECUTIVE SUMMARY

The primary objectives of this study were to determine patterns of traffic flow and develop traffic growth rates by highway type for Kentucky's system of highways. Additional subtasks included the following: 1) a literature search to determine if there were new procedures being used to more accurately represent traffic growth rates, 2) development of a random sampling procedure for collecting traffic count data on local road and streets, 3) prediction of VMT based on socioeconomic data, 4) development of a procedure for explaining the relationship and magnitude of traffic volumes on routes functionally classified as collectors and locals, and 5) development of county-level growth rates based on procedures to estimate or model trends in vehicle miles traveled and average daily traffic.

The literature review produced reference documents that were related to the objectives of the research study; however, none offered any new approaches that could be adopted and directly applied to the prediction of growth rates in Kentucky. The survey of states produced responses from 29 of 45 agencies that received the questionnaire. In general, the survey indicated that states were using historical data and regression analysis to predict growth rates.

The development of a random sampling procedure for count locations on local roads produced a GIS grid-based process. Results from the bias analysis were presented along with a description of procedures used to correct for the sampling bias. It was concluded that large samples were need in order to obtain confidence in mean ADT values for local roads.

Efforts to estimate or model traffic growth at the county level in Kentucky produced several socioeconomic variables which offered promise as reliable independent variables. The analysis procedures included linear regression models and Neural Networks models, with separate analyses for interstate and non-interstate VMT. Results indicated that predictions of VMT based on socioeconomic data was not entirely successful, even though it was determined that available data has the potential to be used predicting non-interstate VMT for most counties. It was noted that national and regional data should be used for predicting interstate VMT. Neural Networks has shown significant potential for use as a modeling technique; however, the nature and structure of specific data should be used to determine which modeling approach is best.

The need to estimate traffic volumes on local roads, without excessive data collection efforts, resulted in development of a relationship between functionally classified collector roads and local roads. Ratios of local road ADT to collector road ADT were developed for both rural and urban classifications. Regression relationships were also developed to explain the relationship between local and collector roads. Models were evaluated for goodness of fit and ability to predict local ADT beyond the limits of the 2000 local sample data. Based on evaluation of regression and logarithmic equations, the power equation was found to provide the best fit.

County level growth rates in traffic volumes were analyzed and linear regression was used to represent changes in ADT. Historical data for the period 1991 through 2000 were used to produce county-level growth rates by functional class.

ACKNOWLEDGMENTS

An expression of appreciation is extended to the following Study Advisory Committee members and others that participated in the project.

Rob Bostrom	Kentucky Transportation Cabinet – Multimodal Programs
Annette Coffey	Kentucky Transportation Cabinet - Transportation Planning
Dan Inabnitt	Kentucky Transportation Cabinet – Transportation Planning
Glenn Jilek	Federal Highway Administration
Jesse Mayes	Kentucky Transportation Cabinet - Multimodal Programs
Peter Rogers	Kentucky Transportation Cabinet - Transportation Planning
Charles Schaub	Kentucky Transportation Cabinet - Multimodal Programs
James Simpson	Kentucky Transportation Cabinet - Multimodal Programs
Paul Utter	Kentucky Transportation Cabinet - Transportation Planning
Ed Whittaker	Kentucky Transportation Cabinet - Transportation Planning
Greg Witt	Kentucky Transportation Cabinet - Transportation Planning

Also, special thanks to Barry House (Kentucky Transportation Cabinet – Multimodal Programs) for his input into the KYTC VMT forecasting procedure found in Appendix A.

1.0 BACKGROUND AND OBJECTIVES

Traffic flow patterns and growth rates are necessary for many of the planning and design functions of the Kentucky Transportation Cabinet (KYTC), and an accurate estimation of those rates are needed for pavement design, air quality modeling, overall planning activities, and other highway infrastructure needs. Recent requirements of TEA-21 and the Environmental Protection Agency (EPA) have placed further restrictions on growth and new highway facility development, primarily based on the acceptable level of vehicle exhaust emissions. Estimates of future growth and the composition of that traffic are critical to these requirements.

Traffic growth rates have been tracked for many years and the patterns have varied significantly dependent upon the geographic area, the socioeconomic conditions, and proximity to growth areas. Highway Performance Monitoring System (HPMS) sample sites have been monitored for several years and the growth rates for Kentucky and 12 other states in the region were compared for the period 1980 through 1995. The annual growth rates for Kentucky during the most recent five years exceeded those of any other state. Kentucky's annual traffic growth rate for the period 1991- 1995 was 4.09 percent, and was the only state with rates in excess of 4.0 percent. Some states were near 4.0 percent (Tennessee and Indiana), while others had rates near 2.0 percent (Ohio and West Virginia). A recent analysis of annual vehicle miles traveled for all vehicle types as compared to heavy trucks showed a relatively even pattern of growth for all traffic between the years 1988 and 1996; however, the pattern for heavy trucks was less uniform. The growth rate for all traffic was approximately 4.0 percent annually, while the rate of growth for heavy trucks was less than the rate for all traffic. The procedure used by the Kentucky Transportation Cabinet to produce the year 2020 VMT forecasts is presented in Appendix A.

The accuracy of measuring traffic growth is linked to the ability of highway planners to adequately monitor the patterns and trends of highway usage by various types of vehicles. This task is directly related to the selection of data collection sites, the reliability of data collection equipment, and the ability to extrapolate from short-term data collection periods to represent annual average data. These and other factors can significantly affect the estimated growth patterns and universal procedures are not in place to represent the variations which can be expected based on geographic area, type of road, socio-economic factors, and various demand generators.

The primary objectives of this study were to determine patterns of traffic flow and develop traffic growth rates by highway type for Kentucky's system of highways. There were other subtasks associated with accomplishing the primary objectives including the following:

- Conducting a search of the literature to determine if there were new procedures being used to more accurately represent traffic growth rates
- Development of a random sampling procedure for collecting traffic count data on local roads and streets
- Development of a procedure for explaining the relationship between routes functionally classified as collectors and locals
- Development of county-level growth rates based on procedures to estimate or model trends in vehicle miles traveled (VMT) and average daily traffic (ADT)

2.0 REVIEW OF LITERATURE AND SURVEY OF STATES

2.1 Review of Literature

A literature search provided several reports as reference material on this project. These reports were reviewed to determine what socio-economic factors could be beneficial for this project and if there were new procedures being used to more accurately represent traffic growth rates. The following reports are listed and summarized below.

• "Estimation of Annual Average Daily Traffic for Non-State Roads in a Florida County" Xia, Qing; et al.; Department of Civil and Environmental Engineering, Florida International University, 1999

A multiple regression model was developed for estimating ADT on non-state roads in urbanized areas in Florida. A sample size of 450 counts was used and 12 initial independent variables were analyzed. Results indicated that the most important contributing predictors were roadway characteristics, such as the number or lanes, functional classification, and area types. Various socioeconomic variables including nearby population, dwelling units, automobile ownership, employment statistics, and school enrollment have insignificant impact on ADT. Additional analyses revealed deficiencies in traditional roadway functional classifications and a need to improve or revise the classification procedures.

• "Estimation of Traffic Volume on Local Roads" Chatterjee, Dr. Arun, et al.; Department of Civil and Environmental Engineering, University of Tennessee

In recent years, the need for reliable estimates of vehicle-miles of travel on local roads has been recognized for the analysis of air quality and also highway safety issues. In order to provide a better understanding of traffic volumes on local roads and to explore alternative methods for estimation, data from Georgia were analyzed using different statistical procedures. In order to develop a mathematical model, an attempt was made to correlate local road volumes with socioeconomic and geographic variables. Initially, eight categories with 45 variables were explored. These included population demographics, education, transportation, income, employment, agriculture, urbanization, and housing. The models developed had poor predictability for rural roads. The results suggested that there might be additional subgroups needed such as road type (paved or unpaved) and locations (outside or within metropolitan areas). Regression clustering analysis was then used. It appeared that it could play a useful role for certain subgroups of traffic volume on local roads but further research in needed.

• "Guidebook on Statewide Travel Forecasting" University of Wisconsin-Milwaukee, Center for Urban Transportation Studies and Wisconsin Department of Transportation, 1999

This guidebook reviews the state-of-the-practice of statewide travel forecasting. It focuses on those techniques that have been considered essential to good statewide travel forecasting. Emphasis is placed on practical methods. This book also makes a distinction between urban travel forecasting and statewide travel forecasting.

• "Assessment of Land-Use and Socioeconomic Forecasts in the Baltimore Region" Talvitie, Morris, and Anderson; Transportation Research Record 775, 1980

Accuracy of forecasts for population, labor force, employment, and car ownership from 1962 to 1975 in the Baltimore area are examined. Comparisons are made at three levels of zonal aggregation-city and suburbs, traffic districts, and traffic zones. The lack of information about household size and household income made inferences from the results incomplete. The results show that region-wide forecasts were accurate for all the variables except population. However, allocation of these forecasts between city and suburbs, to traffic districts, and to traffic zones was quite inaccurate. The results in the paper point toward large errors and uncertainties in the independent variables of traditional travel-demand models.

• "Factors that Affect Traffic Growth Rates and Projection of Traffic Volumes for Use in Highway Economic Models" J.L. Memmott; Transportation Research Record 912, 1983

The magnitude of potential highway user benefits and costs that result from proposed highway improvements must be estimated with a reasonable degree of accuracy for highway agencies to make rational decisions in the public interest. One of the important aspects of most highway economic analysis models is the assumed traffic growth-rate pattern, which is based on one or more projected traffic volumes. The effects of different growth-rate patterns on the estimate of future benefits from a proposed project, as well as the factors that affect traffic projection errors from data collected in Dallas County, Texas, are examined. These factors include the year the projection was made, the percentage of commercial and industrial land development, and changes in highway capacity. A simple model for projecting future traffic volume is also presented, which is based on a multiple regression analysis of historical traffic volume data and adjustments for capacity changes and land development. The model is tested against the traffic projections collected for the Dallas County study sites, with the model producing somewhat more accurate projections in this sample.

• "The Linkage Between Travel Demand Forecasting Models and Traffic Analysis Models" Ho-EPK; Institute of Transportation Engineers, 1992

There are two major types of models for transportation analysis: Travel Demand Forecasting Model (TDFM) and Traffic Operational Analysis Model (TOAM). In order to increase the efficiency and accuracy of the analysis, certain kinds of linkages between these two types of models need to be developed. The purpose of this paper is to investigate such linkages. It first provides a comparison of these two types of models, followed by the discussion of their possible linkages. Finally, this paper provides an integrated framework for the TDFM and TOAM analysis.

• "Relationships Between Highway Capacity and Induced Vehicle Travel" Noland, Robert B., U.S. Environmental Protection Agency, 1998

An analysis of US data on lane mileage and vehicle miles of travel (VMT) by state was conducted. The data were separated by road type (interstates, arterials, and collectors) as

well as by urban and rural classifications. Various econometric specifications were tested using a fixed effect cross-sectional time series model and a set of equations by road type. Lane miles are found to generally have a statistically significant relationship with VMT.

• "Policy Options For Improving Air Quality- The Relationship Between Transport Policies and Air Quality" Henderson, Gordon, et al.; Ove Arup & Partners, 1996

The context and effectiveness of various transport proposals and strategies that aim to reduce traffic related emissions were addressed in this paper. This was due to the gradual change in emphasis in Government policies and initiatives towards the environmental impacts of transportation. Policies have started to reflect increasing concerns over the contribution of road traffic emissions to poor air quality, together with the associated effects on health. Much of the work undertaken had been based on theoretical studies, which often used hypothetical situations. The effects of these situations need to be better understood before appropriate solutions can be reached. It would be necessary to undertake a greater volume of practical research in order to achieve a high level of understanding. It is clear that there are no quick-fix solutions to the problem of urban traffic congestion and its related side effects, such as vehicle emissions.

• "Traffic Growth on Road System – A Review" Sarna, Dr. A.C. and I.C. Agrawal, Traffic and Transportation Division, Central Road Research Institute, New Delhi, 1990

This study was undertaken with the objective of reviewing the traffic growth rates developed and adopted for various studies conducted for road and highway projects and to suggest suitable growth rates for traffic projections.

• "Modeling Of Traffic Growth in Congested Urban Networks" Hounsell, N.B., University of Southampton, U.K.

The economic evaluation of new road and traffic management schemes in urban areas requires forecasts to be made of traffic demand for up to 30 years. This paper describes the results of recent research completed in which a methodology for deriving limits to traffic growth was produced. Network modeling was undertaken to monitor the relationships between traffic growth and a range of network performance measures to establish criteria for identifying effective network capacity.

• "Forecasts of Traffic Growth in South East England" Stokes, Gordon, University of Oxford, Transport Studies Unit, 1992

This paper has taken an exploratory look at traffic forecasts and their feasibility on a local level. It concludes that at the county level the implications of the national forecasts are attainable. However, at the county level some major changes would be required to accommodate the forecasts.

2.2 Survey of States

A survey of the states was conducted to determine: (1) how other states were predicting VMT on functionally classified local roads and (2) how other states predicted traffic growth rates on all functionally classified roads. This survey was sent to 45 of the 50 states and 29 responses were received. This yielded a 64% response rate. This satisfactory response rate may have been due to the convenience of the survey. The survey was sent through electronic mail. This allowed respondents to quickly complete and return the results. Of the 29 responses received, 21 of them, or 72%, responded by electronic mail.

In general, the survey showed that 85% of states did use traffic growth rates. Seventy percent of those growth rates were determined using historic data and regression analysis. The historic data included such parameters as traffic growth, population, land use characteristics, employment status, location, and many others. Twelve states had different traffic growth rates for each county, seventeen states had different traffic growth rates for each functional class of road, and one state had different traffic growth rates for each vehicle type.

Eighty-one percent of states collected ADT by counting some years and estimating others. When these counts were estimated, 43% were estimated using other local road counts. However, other count estimations were based on a higher functional class, proximity to other roads, population, or other parameters. Only 11% of the states counted all their local roads.

The survey results showed that the majority of other states were predicting VMT on local roads and traffic growth rates for all functionally classified roads similar to Kentucky. However, with this project, an improved local road estimation methodology will be generated and therefore advance Kentucky in this area.

The survey questions and answers are provided in Appendix B.

3.0 DEVELOPMENT OF A RANDOM SAMPLING PROCEDURE FOR LOCAL ROAD TRAFFIC COUNT LOCATIONS

3.1 Introduction

Traditionally, transportation agencies have conducted routine traffic volume counts on higher volume highway corridors. However, local roads are important and unique because of the fact that they account for a considerable amount of the total roadway mileage. For example, local roads make up 67% of the total roadway mileage and 12% of the VMT in Kentucky (1). Since traffic counts have typically only been conducted on local roads for events such as road improvement projects and specific developments, the counts are not random which creates problems for estimating total travel on this class of roads.

In September 1998, the need to estimate the overall travel on local roads was further motivated by the EPA who issued a mandate requiring 22 states (including Kentucky) and the District of Columbia to submit state implementation plans (SIPs) regarding the transport of ozone across state lines (2). Nitrous oxides contribute to ozone, or smog, which causes serious

unfavorable impacts on the environment and human health such as damaged vegetation, water quality deterioration, acid rain, and respiratory and heart disease. Sources of NO_x emissions include motor vehicles and electric utilities. The EPA requires state agencies to provide VMT by land-use classification, road-type, and vehicle-type in order to estimate the amount of vehicle emissions being produced on the county level.

VMT is most commonly estimated from average 24-hour traffic counts at points along roads or a subset of roads. The traffic count is adjusted for daily and seasonal factors and then multiplied by the length of the road section to get the VMT. For example, if 1000 vehicles travel a 2-mile section of road, the VMT is estimated to be 2000 vehicle-miles. Likewise, if there are a total of 100 miles of a particular road class in a county and the mean of a number of random traffic counts is 40,000 vehicles per day, then the county-wide VMT estimate is 4,000,000 vehicle-miles for that class of roads. VMT estimated from the existing non-random local road counts and total mileage would overestimate VMT given that the more heavily traveled local roads are the ones more often counted. These more heavily traveled local roads have traditionally been classified functionally as local, but are state maintained.

Now that air quality and not traffic management is the focus of local VMT determination and local traffic count efforts, the problem of determining random locations for local road traffic volume counts must be solved. One common source of random traffic counts is the HPMS established in 1978 by the Federal Highway Administration (FHWA). It is a data collection effort designed to provide current statistics on the condition, use, operating characteristics, and performance of the nation's major highways. This travel information is routinely available for major highway systems and given that it contains random statewide and national information it is useful for the estimation of VMT. In Kentucky, this information is used for estimating the total VMT for the entire arterial and collector road systems, even though the sample is not completely random. In order to get the HPMS sample for submittal to the FHWA, each state had to break the arterial and collector routes into logical roadway sections. Rural section lengths were to range from 3 to 10 miles. Urban access-controlled facility sections were not to exceed 5 miles. All other urban sections were to be between 1 and 3 miles. A random sample was then taken from this total set of road sections (3). What made the sample non-random was the various section lengths and the fact that there were no instructions for selecting the point on the section to take the traffic count. Some agencies may have counted at the busiest point or others at the center. Although some states count local roads as part of the HPMS, most do not.

It might seem that producing a spatially random sample could be easily accomplished by dividing the local roads into segments of a particular length (one tenth of a mile is common for other purposes) and selecting a random sample from this database. However, local road Geographic Information Systems (GIS) databases from which sample locations would be drawn are less developed than those for more major roadways. Given a tenth of a mile section it would be necessary to attribute every road segment in the database with starting points, ending points and mile point locations in order to produce maps of the count locations for field workers. One additional complication is the fact that many local roads, especially in urban areas, are shorter than the segment length that roads are normally divided into. This makes discretizing the routes complicated. Roads shorter than the segment length would always be a single segment and would have a higher chance per unit length of being selected.

It would be useful to have a procedure which selected random points on the roads directly or graphically, analogous to throwing a dart at a map blindfolded and counting at the road location that the dart hit. The objective of this study is to develop such a GIS-based random sampling procedure for the count locations on the functionally classified local roads. A subset of the Kentucky statewide sample that was generated through this procedure is used here to explore the bias issues that arise due to the grid-based nature of the procedure, the shorter length of some local roads, and the various directions or curves of individual roads. The following section of this paper describes other efforts to estimate VMT on local roads. The remainder of the paper describes the GIS grid-based procedure and the evaluation of the bias it creates. The results of the bias analysis are presented along with a description of a procedure to correct for the sampling bias. However, the sampling bias was considered small enough to recommend use of the straightforward sampling procedure without the more complicated bias correction procedure.

3.2 Other Efforts to Estimate Local Road VMT

Efforts have been made in several states to estimate the overall travel on local roads through random samples. Tennessee takes counts on local roads for specific highway projects, railroad crossing studies, and intersection analysis. These count locations are not typically selected randomly. Therefore, the Tennessee Department of Transportation (TDOT) sought other methods to get a random sample of count locations (4). In their study, a program that collects traffic count information for all bridges in the state whose span length is 24 feet or greater was analyzed for possible use. Crouch, Seaver, and Chatterjee (4) proposed a method to measure the randomness of these bridge counts for VMT estimation for rural local roads. The traffic counts at bridge locations were compared to a random sample of traffic counts at nonbridge locations on local roads in eight counties. The researchers developed the procedure used to collect the random sample for non-bridge locations. Each of the eight counties was divided into four square mile grids (the width and length were 2 miles), and a process of repeated systematic sampling was used. First, the grids throughout the county were sampled. Then, within each grid, the location of the actual count was chosen by randomly selecting x- and ycoordinates. Each grid cell consisted of a 10 by 10 matrix. From the randomly selected coordinates, the closest local road location was selected, and at this location, a traffic count was collected by TDOT. This is indeed a random procedure with one possible bias; shorter roads may be less likely to be closest to the 0.2 mile by 0.2 mile grid selected. When working with a large number of counties, the process could be labor intensive and time consuming. Using the random counts generated in this manner the researchers found the bridge counts to be an unrepresentative sample of all rural local roads in each county.

In a California study (5), vehicle miles traveled on dead-end unpaved roads were estimated on a random sample. Traffic counts were collected at random unpaved local road access points to paved roads. Because counting was conducted at the access points to prevent trespassing on the private roads, the issue of selecting the point along a road was not faced. Therefore, a random sample of whole roads was taken. The count locations were mapped using a GIS, so the sites could be easily found. The count provided an estimate of the number of trips generated on the unpaved road, and this was converted into VMT by assuming that there was a single destination on the road and that each vehicle entering or exiting the road traveled half the length of the segment. The assumption that the vehicle is traveling to or from the midpoint of the road may cause the VMT to be incorrectly estimated. For example, dead-end unpaved local

roads could have one origin/destination point at the end of the road. This method is random, but it is only suitable for local roads that dead-end and have very few origin/destination points.

As part of this research study, an email survey of 45 states was conducted using contact names provided by the FHWA division office. The 29 replies indicated various methods for obtaining local road volume counts and sample locations. In Oregon, sample locations are picked from a select group of local roads that a software package indicates are under-sampled. The most recent counts from the local roads that are frequently sampled are then added to the counts of the sampled roads. The total sample may be nonrandom because the local roads that are frequently sampled are usually selected based on where road improvement projects are to be located, developments are to be built, or traffic problems exist. These are historically the higher traveled areas. The random sample of the under-sampled road segments is built by aggregating the full dataset as if it was one continuous road. Microsoft Excel then randomly picks a mile point along the road segments, and each pick becomes a location for a traffic count. The urban sample segments are 0.1-miles in length, while the rural sample segments are 1 mile. The count is taken at the center of the segment.

Other states provided less detailed input in the email survey. Vermont, for instance, selects what they think are the most "important" local roads for the counts. This, of course, is not random. West Virginia does not sample roads that have an average daily traffic value of less than 50 vehicles per day. This nonrandom method would certainly cause the VMT to be inflated if total road length was used for the estimate. In Wisconsin, local roads get counted for special reasons, such as a traffic problem or new development. Again, this is not a random sample and, therefore, the VMT estimate for EPA purposes could be incorrect. Wisconsin proposed developing a random sample of locations on local roads, but it was considered cost prohibitive.

Until recently, VMT estimations were mainly used to determine if a road needed improvements or expansion. Now that VMT is needed by the EPA to predict total vehicle emissions for each county, the importance of an accurate estimation is much greater. The formerly sufficient non-random sampling methods used by many states are no longer adequate. Clearly, a random sampling procedure for the count locations to be used for estimating the VMT on all functionally local roads that is not extremely labor intensive is needed.

3.3 The GIS Grid-Based Sampling Methodology

3.3.1 The Challenges of Finding a Methodology

The location and alignment of roads in most jurisdictions are now usually stored in GIS databases. In addition to this factor, the desire to have maps to direct field workers to count locations makes proceeding with a GIS-based method logical. When roadways are stored in GIS they are usually divided into segments (and, therefore, individual GIS features) at all intersections and many other points, some unsystematic. In the road databases for the three counties used in this study, local road segments ranged in length from a few feet to 10 miles. ArcView, a Windows-based GIS produced by the Environmental Systems Research Institute (ESRI), has a built-in function that can select a random set of such features or in this case segments. However, a random sample taken from this form of road database would not be appropriate for several reasons. First, the exact location on the road needs to be chosen and two

locations on the same road segment need to have the opportunity to be chosen. The reasoning for this is based on the non-uniform variation in traffic volume along a road segment especially for longer roads where different intersecting roads and land uses affect traffic levels. Another reason that the sample could not be taken from this line network is that short and long segments would have been weighted equally. If the sample were taken from the existing GIS line theme, the precise location on the selected segment would then have to be subsequently chosen. Therefore, an individual point on a short segment would have a greater opportunity of being selected than a point on a longer segment.

As discussed in the introduction, a logical approach to developing the random sample would involve picking a random mile point or distance measure along these roads and then mapping it for the people conducting the counts. Knowing the length of every local road in a particular county, a line or row in a spreadsheet program could represent each 1/10th of a mile section. Most spreadsheet programs are capable of taking a random sample from the whole set. However, once the sample is taken it is difficult to direct the people making the traffic counts to the place to count. On local roads, there are typically no mile-markers to indicate location as there are with more major or higher volume roads. Maps of the count locations made in ArcView could have solved this problem. However, limitations in the coding of local road databases present a further problem for this mapping.

Mapping a specific point on a road is very easy with many GIS road databases that have been attributed with a feature called dynamic segmentation. Using this process, every road segment has two "special" attributes in its descriptive attribute table. One indicates the beginning linear reference marker at the start of the segment and the second indicates the end reference. The GIS can then locate any mile point on the road segment based on this information. This allows the mile point reference system to span across adjacent segments. The system could span across an intersection, for example. However, the available GIS databases for local roads rarely contain dynamic segmentation. Therefore, use of a sampling procedure that required start and end mile points to allow mapping would become a labor-intensive process.

As an alternative to creating dynamic segmentation attributes in the database, each individual road segment (as opposed to the whole road) could have been coded automatically with a start mile point of zero and an ending mile point of its length. However, using discrete mile point demarcations such as one tenth in the spreadsheet listing and random sampling still presents another problem for very short local roads especially in urban areas. Therefore, selection of a random continuous number between zero and each segment's length would be necessary in a two-stage process like that used in Tennessee. In the first stage a weighted (by segment length) random sample, with replacement, of the road segments would be taken. In the second stage a point or points along the segment would be selected by random number generation. This procedure would require separate programming outside the GIS and the results would require subsequent transfer back into the GIS for mapping (because the mile points are not meaningful on a segment by segment basis or on local roads without field mile point markers).

The new methodology proposed here is also two-stage but involves use of standard builtin functions of the typical GIS: grid generation, database intersection and random sampling from a feature table. The product is already a line feature in the database and is immediately mapped. Essentially a GIS-grid is generated and used to cut the road segments into small point-like sections, making a new theme from which the random sample is drawn using the direct built-in random sample command. The procedure ensures that the sample locations are spread randomly throughout the study area and that each point-like section along all roads has an equal chance of being in the sample regardless of the total length of the road.

3.3.2 Creating the Point-like Sections for Three Study Areas

In this case the primary GIS used was ArcView. Because the procedure developed during this study involved cutting the roads into small sections using a grid, the shape and density of the local roads were considered potentially influencing and affected the selection of study areas. Since it was not feasible to include all 120 Kentucky counties, three study counties were used: Henderson, Pike and Fayette. Henderson County (440 square miles or 1140 km²) was chosen because it is in the western part of the state where the flat plain topography results in grid-like roads (total of 601 miles (968 km) of local road). It includes the small city of Henderson, which has a population of approximately 27,000. Pike County (788 square miles or 2041 km²) was chosen because it is in the eastern mountainous part of the state, had windy and curvy roads, and was considered a relatively rural county (total of 829 miles or 1335 km of local roads). Fayette County (284 square miles or 736 km²), with a population of approximately 250,000, was selected to represent an urban county with a dense road network (total of 734 miles or 1182 km of local roads). The separate GIS themes for state-maintained, county-maintained and city-maintained local roads were combined for the three test counties to obtain three local road GIS databases.

Unfortunately, ArcView does not have the capability to create a grid (a set of adjacent polygon squares covering a certain area or extent). However, ArcInfo, a compatible ESRI GIS, does have a grid function. Grids were created in ArcInfo by specifying the extent of the area and the grid size. They can be directly used in ArcView. The use of the grid as a "cookie cutter" using the intersection function in ArcView is demonstrated in Figure 1 where the inset shows that the roads in the square are now in four separate pieces or features. Each separate tiny line feature in the output database has a record in the attribute table from which ArcView's sampling script draws the random sample. Note that the road segments are selected, not the squares.

One obstacle with the grid approach is that some bias can be introduced by virtue of the point-like segments not being of equal length as illustrated in Figure 1. The grid being used to cut the roads into small sections was at 90° North, so the roads were being cut at different angles. Some of the sections were considerably longer than others. If you have two roads of equal length and one is cut into several short pieces and the other is cut into a few long pieces, then the road that was cut into several short pieces would have a greater chance of being selected in the random sample. Given that the local road traffic volume was found to vary with original road segment length and between the rural and urban areas, in order to have no bias, the number of segments a particular road was divided into would have to be directly proportional to the length of that road. This means that a road with twice the length of another road should be divided into twice the number of sections.

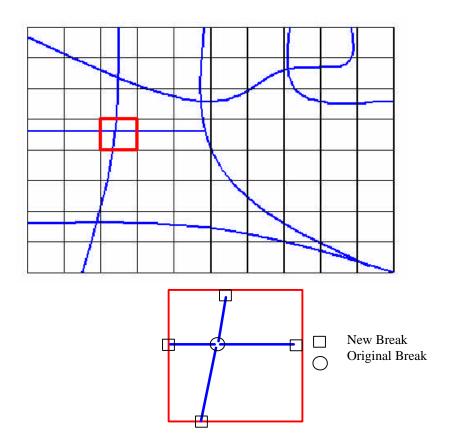


Figure 1. A "Cookie Cutter" Grid on a Network of Roads

The objective then becomes determining the size of the largest grid square that brings an acceptably low bias to the sample. As the grid size approaches zero, the point-like sections approach true points of zero length, which would present absolutely no bias. The smaller the grid square size, the more computer space and time used for the spatial analysis that cuts the road segments. The three counties were analyzed with 0.2-mile, 0.15-mile, 0.1-mile, and 0.05-mile grid square sizes. Although the space issue needed to be considered (the grid for one county at the 0.05-mile size was 148 MB) when choosing the final grid square size, the computing time and ability of a personal computer to do the intersection (cutting) without crashing were the more critical issues.

3.4 Consideration of Bias in the Point-like Sections

The development of a method to measure the bias that would be present in an average traffic count from a sample drawn using this process is necessary in order to compare grid sizes and determine if the straightforward sampling procedure could be used without a more complicated weighting procedure to correct for the bias. Once the road segments were cut by the grid, the length of the original road section and the number of point-like segments into which it

was divided were available for use in measuring bias. Figure 2 illustrates this data for one of the 0.2-mile grids in Pike County. (The lines and equations on this figure are described below.)

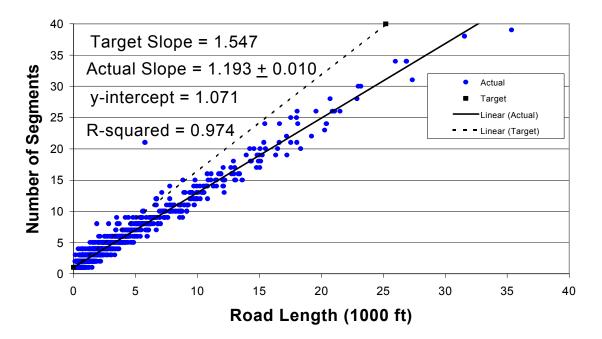


Figure 2. Bias Analysis for Pike County (0.20 mile grid)

The first of several indicators of bias considered was the coefficient on the X^2 variable in the equation for the best-fit quadratic curve (this curve is not represented on the figure). The value of the coefficient on the X^2 variable is an indication of the curvature of the line and increasing values of the coefficient would indicate bias. A negative value would indicate that the line curved downward specifying that the longer roads were being cut into relatively fewer pieces and were, therefore, under-represented in the sample. A positive value would denote the opposite; longer roads were over-represented in the sample. The magnitude of the coefficient for the X^2 term also provided an indication of whether it was appropriate to proceed using a linear regression-based representation of the relationship between road length and number of point-like segments.

Bias analysis graphs and equations such as that shown in Figure 2 were generated for each county and grid size analyzed. The coefficients on the X^2 variable in the equation for the best-fit quadratic line as generated by Excel are shown in Table 1. Bold values are statistically significant at the 0.05 level. Within an individual county, the value of the coefficient fluctuates. This alone is not insightful. It is the comparison between counties that provides some useful information. The magnitude of the coefficient is substantially greater for Fayette County than it is for Henderson and Pike Counties. This is evidence that the grid process works better for rural

roads than for urban roads because they are longer and less dense. The low magnitude of these coefficients was considered justification to proceed with representing the relationship with a linear equation.

	Coefficient on the	y-intercept	r-squared
	X ² variable	(linear)	(linear)
Pike County			
0.20 mile grid	-0.0007	1.071	0.97
0.15 mile grid	-0.0005	1.066	0.98
0.10 mile grid	0.00001	1.023	0.99
0.05-mile grid	-0.0016	1.026	0.99
Henderson County	,		
0.20 mile grid	-0.0005	1.049	0.98
0.15 mile grid	-0.0011	1.11	0.98
0.10 mile grid	-0.0001	1.038	0.99
0.05-mile grid	-0.0013	1.036	0.99
Fayette County			
0.20 mile grid	-0.0054	1.005	0.74
0.15 mile grid	-0.0120	1.012	0.81
0.10 mile grid	-0.0073		0.90
0.05-mile grid	-0.0123	1.032	0.97

Table 1. Y-Intercept, R-Squared, and X² Coefficient

However, it is important to note that the relationship could be linear (X^2 coefficient = zero) and bias could still exist. Therefore further consideration of the linear regression equation was undertaken. One factor considered in measuring this bias was the y-intercept of the best-fit line. On one hand, this value would ideally seem to be zero because a road of zero length should be divided into zero sections. However, a y-intercept of one would indicate that a road of very small length was divided into one section. But this indicates that very short roads will be automatically over-represented in the sample. As evident in Figure 2 some very short roads were divided into up to 3 or 4 segments. As shown in Table 1, the y-intercept value did not vary significantly as the grid size was changed. For all counties and grid sizes, it hovered just above 1, which is expected because very short segments would most often be cut into one piece or, at most, two pieces. This result illustrates that some bias will be present with all grid sizes given that short segments are over-represented.

The line corresponding to no sampling bias due to road length would be expected to have a certain slope referred to here as the target slope. The target slope is obtained by dividing the total number of segments in a county by the total length of local roadway in that county. For example, if there are 5,000,000 distance units of local road in a particular county, and a specific grid size cut these roads into 7000 segments, the segments should be on average 714.29 distance units (5,000,000 distance units / 7000 segments) long. The target slope is the inverse of this number (divided by 1000 for the graph scale shown) and the line on Figure 2 was derived by using this slope with a y-intercept of one.

Comparison of the target slope to the actual slope first required consideration of the r-squared value. The r-squared values shown in Table 1 indicate that both the sampling procedure and the weighting procedure described below which is based on the linear slope are better suited to the non-urban areas. The variation in the number of segments decreases with the smaller grid square sizes as expected. However, the relatively high overall r-square values indicate that the best-fit line does indeed represent the data well. It provides legitimacy to the comparison of the actual and target slopes described below.

Table 2 includes the target slope, the actual slope of the best-fit line, and the percent difference between its slope and the target slope. The range included with the slope is the 95% confidence interval. The confidence interval was inspected for the inclusion of the target slope. None of the target slopes were included indicating bias was present.

In each county the percent error between the target slope and the actual slope decreased as the grid square size approached zero, as expected. The target slopes are greater than the actual slopes indicating that as road length increases the road becomes under-represented in the sample. Fayette County had percent errors that were greater than the other two counties. Again, this indicates that less dense roads are better suited to the grid process. Henderson County's grid-like roads have smaller error than Pike County where roads are curvier. Therefore, it can be inferred that the grid procedure works best for grid-like roads and rural roads. The grid size is more crucial in urban areas.

In order to consider the impact of the bias due to road length and the grid procedure, weights were developed based on the slope comparison for application to the traffic counts collected for these three counties by the Kentucky Transportation Cabinet. Counts were performed during the calendar year 2000 at points selected using the 0.2-mile grid procedure (a worst case scenario). The number of 24-hour counts performed in Henderson, Pike, and Fayette counties was 164, 243, and 337 respectively. Counts were corrected for seasonal and weekly factors using constants developed in Kentucky based on counts on all functionally classed roads over many years.

Target Percent						
	Slope	Slope	Error			
Pike County						
0.20 mile grid	1.547					
0.15 mile grid	1.945	1.593 <u>+</u> 0.0103	18.1			
0.10 mile grid	2.752	2.414 <u>+</u> 0.0116	12.3			
0.05-mile grid	5.182	4.841 <u>+</u> 0.0137	6.6			
Henderson County						
0.20 mile grid	1.552	1.260 + 0.0120	18.8			
0.15 mile grid	1.977	1.668 + 0.0143	15.6			
0.10 mile grid	2.802	2.512 + 0.0161	10.3			
0.05-mile grid	5.296					
Fayette County						
0.20 mile grid	3.029	1.228 <u>+</u> 0.0170	59.5			
0.15 mile grid	3.441	1.629 + 0.0183	52.7			
0.10 mile grid	4.258					
0.05-mile grid	6.754	_				

 Table 2.
 Slope Comparison

The best-fit line and the target line were known for each county for the 0.2-mile grid size. In other words for a road of a particular length, the number of segments into which it was divided and the number of segments into which it should have been divided were known. The weight was calculated as the ratio of the number of segments into which the road of a given length should have been divided if no bias by road length existed and the actual average number of segments into which the road was divided. This weight varied by road length as illustrated in Figure 3 for Pike County for all grid sizes. Using the weights for the 0.2-mile grid size a weighted average for the 24-hour traffic count, or ADT was calculated. Table 3 presents the sampled and weighted average ADT and the subsequent sampled and weighted VMT estimate for the local roads in each county based on the 0.2-mile grid process. The table demonstrates that without the weighted ADT, the VMT estimate for each county would be slightly overestimated. The greatest difference is in Fayette County. This is further evidence that the weighting procedure is more necessary in urban areas but also a function of the greater number of shorter roads in an urban area. However, the percent difference due to the sampling bias is small and deemed acceptably low for the modeling purposes in either planning or the air quality considerations described at the beginning of this paper. Based on the slope comparison the bias would be even less with the smaller grid sizes. It would not be useful to undertake the multistage weighting procedure calculations.

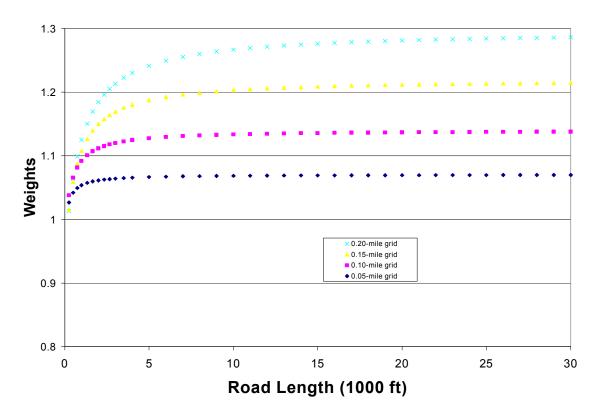


Figure 3. Pike County Weights

	Average ADT (veh/day)	Average weighted ADT (veh/day)	VMT Estimate (veh-miles)	Weighted VMT estimate (veh-miles)	
Pike County	454.87	453.18	377232.79	375831.24	
Henderson County	386.27	367.59	232105.78	220881.16	
Fayette County	747.06	719.56	548177.69	527998.74	

 Table 3. Corrected and Uncorrected ADT and VMT Values (0.2 mile grid-based sample)

3.5 Conclusions

In summary, a straightforward sampling procedure has been developed and validated that will allow random sampling of traffic count locations on extensive local road systems. Due to use of built-in GIS commands, sampling does not require time-intensive processes and the results can be directly mapped for field use. The procedure offers a means to determine not only a random road but also the point along the road where counting should occur. Furthermore, it can handle the very short local roads without greatly biasing the sample.

The analysis presented here provides guidance to determine a recommended grid size for use in sampling that would balance computer time/space while ensuring acceptable randomness of sampling. Attempts to use grid sizes below 0.05-miles were not successful in ArcView for the study areas used. Although individuals should select a grid square size based on their computer capabilities and the characteristics of the roads in their study, these results indicated that a larger grid size can be used for rural roads and grid-like roads. The grid square size needs to be smaller for urban counties due to the dense, short roads. Since the 0.05-mile grid square size is very difficult to work with, the 0.1-mile size is recommended for urban counties. The recommendation for rural counties is to use the smallest grid square size that is feasible, but a 0.2-mile size would be sufficient especially if roads are in a grid-like pattern.

3.6 Local Road ADT Sample with Spatial Variables

This section describes the sample of local road ADTs that were collected during this project, a summary of the data, and the regression results of a GIS analysis to determine if spatial variables such as local road density and distance from cities or interstates would be useful in predicting ADT.

Using the sampling procedure described previously, the locations for 24-hour traffic volume counts on local roads throughout the state were selected. Samples were taken in the 27 counties shown in Figure 4. One random rural and one random urban county was selected from each of the 12 highway districts in Kentucky in order to provide a geographic representation for the whole state. Because a significant portion of the population of the state lives within the Louisville, Lexington, and Northern Kentucky triangle, three additional counties were selected in this area: Shelby, Fayette, and Grant. Shelby and Fayette have both an urban and rural area while Grant has only rural areas despite being on the outer fringe of the rapidly growing area of Northern Kentucky.

In order to define the population of local roads from which the random sample would be taken for counting, the local roads were combined from the state maintained GIS road database and the county/city maintained GIS database. In some cases, certain roads changed functional class along their length. These roads were manually edited to ensure only the local segments were included in the database.

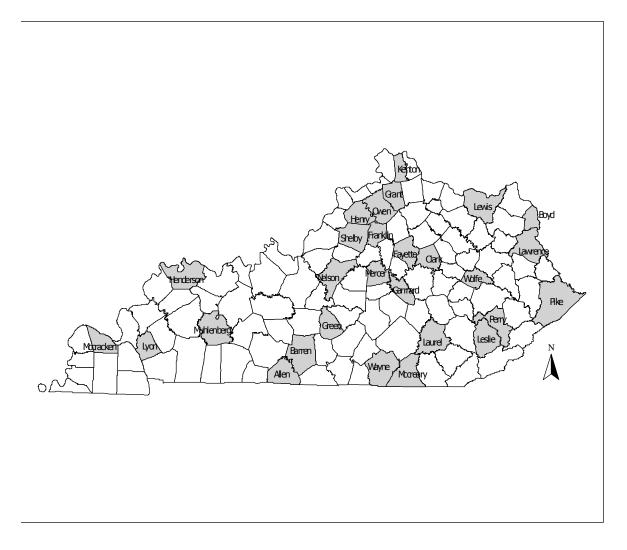


Figure 4. Counties Used in Local Road ADT Data Collection

Once the full local road database had been established for all 27 counties, it was necessary to separate the database for each county into separate rural and urban datasets. This was conducted at the direction of the KYTC and relates to their tradition of handling VMT predictions separately for urban versus rural roads. There was a desire to ensure both types of roads were represented. The separation procedure was conducted in GIS on a county-by-county basis. Because incorporated city boundaries do not necessarily match the boundaries of the urbanized areas, the GIS polygons of incorporated city areas were augmented with the areas that were considered functionally urban by the KYTC. This information was contained on paper maps and was manually entered into the GIS. One exception was Fayette County, where all roads are considered urban due to the single city and county designation. In this case, the urban service boundary was used to classify the local roads as either urban or rural. The second column of Table 4 indicates which counties contained both rural and urban local roads and which contained only rural. Once boundaries had been established for the urbanized areas, they were overlaid with the local road database for each county to divide the databases in two.

County Rural / Urban		Target	Final Sample
		Sample Size	Size
Allen	Rural	107	127
Barren	Rural /Urban	145/29	167/32
Boyd	Rural /Urban	45/86	47/99
Clark	Rural /Urban	N/A	63/63
Fayette	Rural /Urban	50/308	35/302
Franklin	Rural /Urban	42/52	48/56
Garrard	Rural	56	62
Grant	Rural	79	92
Green	Rural	97	102
Henderson	Rural /Urban	106/44	119/45
Henry	Rural	66	72
Laurel	Rural /Urban	163/25	176/24
Leslie	Rural	74	86
Lewis	Rural	99	105
Lyon	Rural	92	107
McCracken	Rural /Urban	45/91	50/88
McCreary	Rural	138	160
Mercer	Rural /Urban	62/25	72/27
Muhlenburg	Rural	142	150
Nelson	Rural /Urban	77/28	88/31
Owen	Rural	78	76
Perry	Rural /Urban	76/25	90/28
Pike	Rural /Urban	191/25	219/24
Shelby	Rural /Urban	62/25	67/24
Wayne	Rural /Urban	106/25	126/29
Wolfe	Rural	56	62
Total		3375	3801

Table 4. Local Road ADT Sample Locations by County

The total number of traffic volume counts to be taken was based on the budget available in the KYTC Division of Transportation Planning, which was separate from this project. The counts were to be conducted by Wilbur Smith Associates, some KYTC Divisions, and some Area Development Districts. Although the count locations were determined as part of this project, the count management was conducted by the KYTC. The total target number of counts for each rural and urban section of each county is shown in Table 4 column 3. The 3375 counts were allocated proportionally to the length of local road in the jurisdiction, but assuming that 25 was the minimum number that should be counted in any given rural or urban jurisdiction.

As shown in Table 4 column 4, the actual number of counts taken was different from that

intended. This occurred for several reasons. Clark County was added after the fact at the request of the KYTC thus increasing the overall total. In the random sampling procedure, an over sample of 15% was taken. These "extra" locations were used in several ways. First, extras were used to replace roads that could not be found, did not exist, or could not be counted for various reasons. Second, when two locations were adjacent to each other such that no intersection or traffic generation was present between them, another count was taken and the count at the one site was used as the count at the adjacent site. This ensured that the contractors still took the number of counts for which they had been hired, while effectively increasing the sample size.

At the direction of the KYTC, the ADT at some count locations was estimated by the contractor instead of actually being counted. The equipment and software package that were used to process counts rounds to the nearest 10 vehicles in each hour. Therefore when a traffic count in one hour was less than 5 it was recorded as 0. In very low volume locations where it was expected that most if not all hours would be less than 5 vehicles (such as a dead-end road); the ADT was estimated using the following guideline. A residential home was assumed to produce a total of 10 trips per day. A business was assumed to produce 25 trips per day. In general if the field workers felt that less than 200 trips per day would be counted on the road he or she undertook estimation instead of an actual count. In total, exactly one third of the ADT data was estimated.

The counts received from the field workers were adjusted for seasonal and weekly variation using standard programs at the KYTC.

3.7 Local Road Traffic Volume Summary

A summary by county of the ADT values for rural and urban local roads is shown in Tables 5 and 6. Chi-square test results indicate that the mean ADT varies between rural and urban areas as well as by county. The mean ADT in urban areas was 763 while in rural areas it was 212. A standard deviation for rural areas of 386 indicates that there is wide variation in ADT on local roads. However, a standard deviation of 1323 for urban areas indicates this variation is even higher in the urban areas. This unfortunately dictates that large samples are needed in order to get good confidence in mean ADT values for local roads.

County	Maximum	Minimum	Mean	Median	Standard	Quartile 1	Quartile 2
--------	---------	---------	------	--------	----------	------------	------------

	ADT	ADT			Deviation		
Allen	2285	0	212.7	80	368.7	30	232
Barren	1156	0	152.6	99	185.2	40	189
Boyd	2094	8	335	160	507.1	64	256
Clark	1310	30	279.8	184	284.5	118	304
Fayette	1916	8	532	299	562.3	144	869
Franklin	2356	24	299.2	161	453.8	86	313
Garrard	2759	0	294.8	105	534.2	38	242.3
Grant	2094	0	222.1	130	357.2	60	227.5
Green	2290	0	118.2	48	269	23.5	119.2
Henderson	2420	0	162.8	60	337	19	178
Henry	1169	0	162.7	94	223.6	34	175
Kenton	300	40	154.3	145	83.6	77.5	227.5
Laurel	7325	0	305.6	168	630.6	41	335.8
Lawrence	1785	0	137.1	53	260.3	30	102.3
Leslie	2393	0	219.8	143	317	47.5	268
Lewis	2560	0	177.6	85	344.2	32	197
Lyon	2173	0	131.3	55	261.3	20	147
McCracken	1186	0	180	120	216.9	37	214.2
McCreary	2378	0	154.6	50	287.6	20	180.5
Mercer	620	0	165.7	138.5	157.3	47.7	204.5
Muhlenberg	4771	0	182.5	80	440.8	30	202
Nelson	1064	0	192.3	138.5	205.1	51.2	244
Owen	2294	0	170.5	51.5	382.8	16.5	183.8
Perry	1869	0	263.3	159	329.4	59	394.8
Pike	5592	0	391.3	180	630.2	90	463
Shelby	1107	9	221.6	156	212.8	92	267
Wayne	980	0	113.9	55	166.8	28	129
Wolfe	393	0	84.2	64	84.3	16	109.5

Table 5. Local Rural Road ADT Summary

County	Maximum	Minimum	Mean	Median	Standard	Quartile 1	Quartile 2
-	ADT	ADT			Deviation	_	-
Barren	10069	10	962.219	400.5	1826.6	121	1070
Boyd	6862	0	425	175	1073	100	260
Clark	6612	0	1077	478	1376	228	1626
Fayette	10587	0	772	365	1271.2	137	861.2
Franklin	5495	0	858	349	1263	155	973
Henderson	7495	0	977	589	1397	158	1318
Kenton	14114	0	805	234	1536	150	627
Laurel	4919	20	902	362	1414	45	1149
McCracken	7238	0	535	228	969	113	504
Mercer	4402	0	636	132	1038	50	703
Nelson	6956	0	1114	488	1504	140	1659
Perry	1924	19	460	256	531	134	630
Pike	9794	0	1035	189	2140	90	1189
Shelby	1843	0	612	426	579	88	1161
Wayne	3455	0	587	261	732	165	709

 Table 6. Local Urban Road ADT Summary

3.8 Regression Analysis to Predict Local Road ADT

A standard set of county level variables were available and used elsewhere in this project to predict VMT. These include: 1) population, 2) average per capita income, 3) employment, 4) county-wide total earnings, and 5) licensed drivers. Table 7 indicates the R-square results of linear regression models to predict the mean county-wide local road ADT from this dataset using each of these county-wide variables. The R-squared values were used as a measure of the amount of variance in the ADT that each variable could account for. None of the variables for the urban areas produced results that would be acceptable. The results for the rural areas are promising in terms of use of these variables to forecast VMT and ADT on local roads.

Dependent Variable	Independent variables	R-Squared
Mean ADT	Population (P)	0.002
	Income (I)	0.001
	Employment (E) County-wide Total Earnings (C)	0.001
	Licensed Drivers (L)	0.002

URBAN

RURAL

Dependent Variable	Independent variables	R-Squared
Mean ADT	Population (P) Income (I) Employment (E) County-wide Total Earnings (C) Licensed Drivers (L)	0.422 0.263 0.474 0.484 0.416

 Table 7. Regression Results for County-Level Variables

In this phase of the project, the main objective was to generate and test spatial variables generated by GIS to determine their usefulness in predicting ADT on local roads. Six new variables were generated for each count point using ArcView. These had the advantage of not being county based but specified to the actual location of the road section. The first three variables were local road densities. The variables were equal to the number of miles of local road in a 1, 2, and 5-mile radius of the count location. This was considered a proxy measure of the surroundings of the road in that remote locations would have low road densities and city or congested areas would have higher road densities. The final three variables were the straight-line distance between the count location and the nearest freeway or main highway, city, and state road respectively. The main highways used in this calculation are shown in Figure 5 while the cities used are shown in Figure 6.

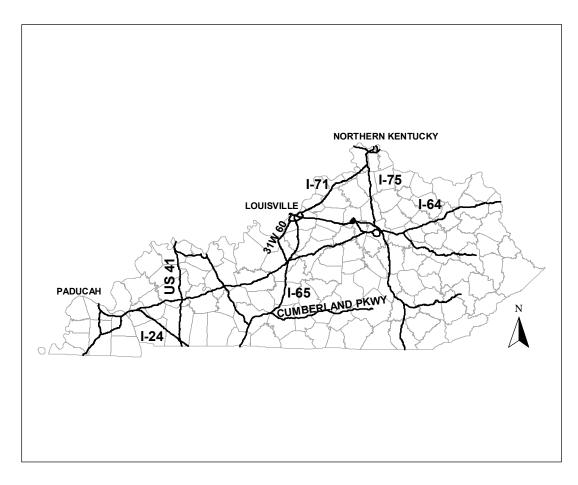
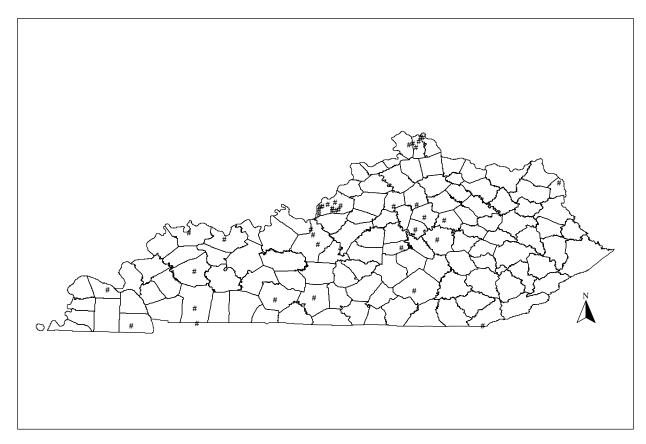



Figure 5. Major Highways Used in Distance Calculation

Ashland **Bowling Green** Covington Danville Elizabethtown Erlanger Fern Čreek Florence Fort Campbell North Fort Knox Fort Thomas Frankfort Georgetown Glasgow Henderson Highview Hopkinsville Independence Jeffersontown Lexington-Fayette

Louisville Madisonville Middlesborough Murray Newburg Newport Nicholasville Okolona Owensboro Paducah Pleasure Ridge Park Radcliff Richmond Shively Somerset St. Dennis St. Matthews Valley Station Winchester

Figure 6. Cities Used in Distance Calculation

The results of the regression models for each county with these spatial variables as predictors are shown in Tables 8 and 9. The regressions were also performed for all the data points together and this is indicated in the "all counties" column. Overall these variables on their own do not account for a significant portion of the variation in the ADT and could not be used to predict local road ADT. However, in the case of rural roads, the road density variable does explain up to 5% of the variation and could be used in combination with other predictors.

	Barren	Clark	Fayette	Franklin	Henderson	Kenton	Laurel
Independent variables							
1 mile local road density	0.053	0.012	0.01	0.006	0.003	0.006	0.015
2 mile local road density	0.052	0.004	0.032	0.006	0.043	0.003	0.015
5 mile local road density	0.026	0.008	0.047	0.034	0	0	0.034
Distance from Major Road	0	0.028	0.018	0.069	0.007	0.006	0.406
Distance from City	0.036	0.008	0.022	0.003	0.075	0.005	0.389
Distance from State Road	0	0.028	0.036	0.056	0	0.002	0.072
	Mercer	Nelson	Perry	Pike	Shelby	Wayne	All counties
Independent variables							
1 mile local road density	0.111	0.274	0.065	0.011	0.069	0.008	0.016
2 mile local road density	0.005	0.198	0.064	0	0.022	0.002	0.011
5 mile local road density	0.076	0.036	0.008	0.005	0.11	0.002	0.003
Distance from Major Road	0.094	0.006	0.08	0.001	0.114	0.093	0.0005
Distance from City	0.109	0.028	0.004	0	0.001	0.029	0.0005
Distance from State Road	0.053	0.064	0.031	0.002	0.048	0.006	0.008

Table 8. Urban ADT R-Squared Regression Results for Spatial Variables

	Allen	Barren	Boyd	Clark	Fayette	Franklin	Garrard
Independent variables							
1 mile local road density	0.149	0.017	0.226	0.058	0.116	0.215	0.317
2 mile local road density	0.173	0.005	0.277	0.396	0.365	0.242	0.065
5 mile local road density	0.149	0.005	0.138	0.209	0.326	0.126	0
Distance from Major Road	0.011	0.055	0	0.005	0.001	0.06	0.054
Distance from City	0.017	0.029	0.243	0.267	0.366	0.09	0.009
Distance from State Road	0.065	0.049	0.064	0.103	0.026	0.024	0.092
	Green	Henderson	Henry	Laurel	Lawrence	Leslie	Lewis
1 mile local road density	0.017	0.071	0.047	0.016	0.134	0.013	0.045
2 mile local road density	0.047	0.015	0.008	0.01	0.067	0.003	0.022
5 mile local road density	0.058	0.012	0.067	0.003	0	0.068	0.029
Distance from Major Road	0.003	0.057	0.007	0.078	0	0.013	0.028
Distance from City	0.009	0.02	0.022	0.013	0.004	0	0
Distance from State Road	0.034	0.044	0.033	0.024	0.073	0.053	0.006
	Lyon	McCracken	McCreary	Mercer	Muhlenberg	Nelson	Owen
1 mile local road density	0.018	0.027	0.071	0.023	0.022	0.062	0.031
2 mile local road density	0.03	0.053	0.06	0	0.041	0.242	0.005
5 mile local road density	0.05	0.015	0.048	0.054	0.035	0.299	0.005
Distance from Major Road	0.036	0.007	0.029	0.067	0.023	0.031	0.046
Distance from City	0.031	0.02	0	0.035	0.008	0.043	0.006
Distance from State Road	0.02	0.096	0.035	0.068	0.003	0.008	0.042
	Pike	Shelby	Wayne	Wolfe	All counties		
1 mile local road density	0.054	0.048	0.026	0.006	0.026		
2 mile local road density	0.021	0.066	0.009	0.018	0.024		
5 mile local road density	0.003	0.018	0.029	0.014	0.19		
Distance from Major Road	0.001	0.028	0.023	0.022	0.002		
Distance from City	0.009	0.044	0.015	0.03	0.004		
Distance from State Road	0.021	0.092	0.026	0.05	0.24		

Table 9. Rural ADT R-Squared Regression Results for Spatial Variables

4.0 PREDICTION OF VMT BASED ON SOCIOECONOMIC DATA

4.1 Introduction

Traffic flow patterns and their likely growth trends are critical for planning, design, and maintenance of transportation facilities. Recent transportation authorization bills (TEA-21 and ISTEA) placed restrictions on construction of transportation facilities and tied that to meeting emission standards. This made the task of reliably estimating future travel more critical to the transportation planning process.

The KYTC has undertaken a number of studies to address different aspects of the traffic/travel growth issue. This study is one of several that are aimed at developing methods to estimate future travel levels in all counties of the State of Kentucky. This study develops models to predict VMT for interstate and non-interstate routes for each of the 120 counties. As predictors for VMT, the models use socioeconomic data such as income, employment, retail sales, etc.

This section documents all modeling attempts. Numerous modeling approaches were tried with varying degrees of success; the outcomes of all (successful and unsuccessful ones) are noted in this section. The unsuccessful ones still represent a valuable source of information for any future work in the area of traffic growth modeling.

4.2 Background

Reliable estimates of VMT are critical for highway planning and design. Because of enacted regulations by EPA and the requirements of recent transportation authorization bills (TEA-21), vehicle miles of travel play a critical role in determining the use of funds to construct and upgrade transportation facilities in areas that have been previously designated as being in non-attainment of the National Ambient Air Quality Standards (NAAQS). For these areas, EPA and the Kentucky Division for Air Quality are required to develop a State Implementation Plan (SIP) demonstrating how the area will achieve and maintain attainment of the NAAQS. Utilizing the EPA mobile source emission model to determine future emission rates, and taking into account forecasted county-level VMT, along with associated speed distributions, this SIP establishes maximum level (budgets) emissions that can be produced by highway mobile sources in future years. These emission calculations are performed periodically to determine if the area is in "conformance", i.e. that the calculated emissions are not greater than the budgeted emissions as set in the SIP. Against this background, this study was initiated to develop models to predict future VMT.

Currently, VMTs for a given county are estimated based on traffic volume counts, mileage of different road classes, and a measure of socioeconomic activity in the respective counties. Where actual traffic counts are not available, estimates based on modeled historical data are used.

The initial effort of this study aimed at developing VMT growth trends at the county level for each roadway functional class. Because of the limited number and coverage of traffic counting stations, this objective was later revised, and roadways were divided into only two classes: Interstate and non-Interstate. VMT growth models were to be developed for these two roadway classes.

4.3 **Objective**

The objective of this section is to develop models to predict VMT at the county level using socioeconomic data as "predictors". The predictors should be such that they, themselves, can be reliably predicted for future years. The resulting models should have a reasonable level of accuracy (a $\pm 10\%$ error was established as a goal). Yearly VMT growth should be within the KYTC's established "normal" ranges. Other appropriate statistical and data quality tests will have to be satisfied.

The underlying rationale is that VMT are generated because of socioeconomic data within an area, and that trends in socioeconomic data may be good indicators of how VMT will change. The approach to be developed in this chapter may be used in parallel to using actual ADT and road mileage.

4.4 Data Input

The 1993-1999 VMT database (Appendix C) developed by the Division of Planning at the KYTC was used to build the VMT prediction models. The county estimates of VMT are prepared by the KYTC each year for all counties in Kentucky. Furthermore, VMT are prepared by functional class and area type (i.e., rural vs. urban).

The socioeconomic data was based on the Woods and Poole published data (6). Appendix D lists the socioeconomic data for each county for each of the study years (1993-1999). A list of available socioeconomic variables is shown in Table 10. Data on these variables is available for past and current year. Projections are also available for future years (but not for licensed drivers).

Variables
Population
Earnings (includes individual but not corporate earnings)
Employment
Per Capita Income
Retail Sales
Number of Licensed Drivers (not shown in Appendix C)

 Table 10.
 Socioeconomic Variables Used

4.4.1 Data Measures of Quality

Two sets of quality measures were used to ensure the usefulness of the developed models. First, specific tests on the inputs and outputs that are standard with each of the modeling approaches were used. The second set is one that was imposed by the KYTC. This measure specifically requires that errors in prediction do not exceed $\pm 10\%$ for a given county during a given year. Errors in prediction are calculated from existing (given) and modeled VMT values:

% Error = 100*(Given VMT-Predicted VMT)/Given VMT

Additionally, when models are tested in forecasting applications, yearly VMT variations are to be within general ranges. These rules-of-thumb were developed based on historic trends: 1-6% increase per year for non-interstate VMT and around 2-4% increase per year for interstate VMT.

4.5 Methodology

Two modeling approaches were used to achieve the above objectives: 1) Linear regression, and 2) Neural Networks. Initial modeling effort was confined to linear regression only. Neural Networks were used when linear regression did not produce acceptable models. The basic approach was to try to establish association between VMT estimates (dependent variable) and the independent variables.

4.5.1 Regression Modeling

Two independent approaches were used based on linear regression. In the first, regression models were developed using county-based VMTs. The second developed state-based VMT then apportioned it to each county based on selected county socioeconomic measures. Within each of these approaches, different variations were used (described in the Results section). Unless otherwise noted, regression models were generated using the VMT estimates that the KYTC has generated over the years. No homogeneity of variance and normality tests were conducted for this data. Preliminary scatter plots were examined to establish any trends between VMT and the independent variables.

4.5.2 Neural Networks (NNets) Modeling

Neural Networks (Nnets) are computational structures capable of learning from examples and quickly recognizing the patterns they have learned (7). Put differently, Neural Nets simulate human neuron functions and interconnections between neurons, and can be implemented on digital computers. An important feature of neural nets is their ability to interpolate and extrapolate from known cases and thus produce the best approximation to the desired result even if the patterns to be recognized were not in the set of patterns used for the training (7). NNets resemble the brain in two respects (8):

- 1. Knowledge is acquired by the network through a learning process
- 2. Inter-neuron connection strengths known as synaptic weights are used to store the knowledge

NNets operate in the two fundamental modes of *learning (or training)* and *recognition (or testing)*. In the learning phase, a large set of example patterns (the training set) is presented to the input of the network. The outputs obtained are compared with the desired results and a set of internally stored parameters or "weights" of the network are modified according to a given learning algorithm. The process is iterated until the total error reaches an acceptably low level. In the recognition phase, the test data is fed to the network to produce the desired outputs under the effect of the weights.

A NNet consists of neuron, or nodes, and neuron synapses, or connections. The neurons are grouped together to form a layer of a NNet. Any NNet typically contains two or more layers, with interconnections between each two adjacent layers. NNets can handle highly nonlinear problems, which would be much more complex or impossible to solve using traditional analytical methods. They can solve these problems much more quickly as well. Put differently, NNets have the capability to detect causal relations between the data patterns that other techniques cannot. This derives from the unique structure and functioning of a NNet.

There are different structures for a NNet. The one used in this study is the Backpropagation Neural Network (BPN). A full description of this Net is beyond the scope of this report, and may be found in specialized texts (8).

The use of NNets for prediction is relatively new. NNets have been shown to have an advantage over traditional prediction techniques particularly when the data has some noise and where complex non-linear relationships exist between the dependent (predicted) and independent (predictors) variables. In these cases, NNets were shown to have a predicting advantage over traditional approaches such as regression.

For this study, Neural Networks were tried with different combinations (and forms) of variables.

4.6 **Results**

This section presents a brief account of the results from the different modeling approaches (and the variations within each). This summary accounts for both *successful* and *unsuccessful* trials. The account of unsuccessful trials is presented because of the valuable lessons and findings. This information is important for future work on this subject. A summary of the most promising models, henceforth called final models, is presented at the end of this chapter.

The results are presented in two parts: The first part is the regression models; the later part is the NNet models. Within each of these two modeling approaches, numerous combinations of models, levels of aggregation (state vs. county-based), class of dependent variables (interstate VMT, non-interstate VMT, and combined VMT), and form of independent variables (logarithmic and normal form) were tried.

The final models are presented separately for *interstate* and *non-interstate* VMT. These are the best models that could be obtained; they do not necessarily represent models that are ready to use (see section 4.8 Discussion).

4.6.1 Descriptive Summary of All Trials and Results

Valuable information was gained from all modeling trials regardless of the level of success attained. This section provides a summary of all (successful and unsuccessful) modeling trials. This is being provided as a resource for future VMT modeling effort.

4.6.1.1 Regression

This section provides a summary of all regression-based modeling. Initially, models were developed based on degree of aggregation: county-based and then state-based models. The general form of the model is:

 $VMT = Constant + a_1 X_1 + a_2 X_2 + \ldots + a_n X_n$

Where a_i is a regression coefficient and X_i is an independent variable.

For county-based models, VMT is for a given county-year combination. For state-based models, VMT is that of the state for a given year.

4.6.1.1.1 County-Based Regression Models

Initially, effort was directed at forming "logical" groups of counties using common characteristics. The idea was to develop separate models for each group of "similar" counties. However, all efforts to logically group counties were unsuccessful. Hence, the county-based models described throughout this chapter treated each county as a unique entity. Note that a county-year data constitutes an *observation*. In the language of NNets, it is a *pattern*.

In this case, county-based VMT and socioeconomic variables were used to develop the regression models. The best models were then used to predict VMT based on the corresponding socioeconomic data to verify their predictive ability at the county level. The following section presents a summary of the resulting models, along with an assessment of their potential for application.

From the county-level prediction error statistics, the county-based regression models generally lacked the predictive capability desired by the KYTC. Examination of errors for individual counties-years showed that for many points (county/year combination), the model grossly underestimates and in some cases overestimates the VMT. At least for such cases, the variables in the models seem inadequate to reliably predict VMT. Hence, the county-based regression models are inadequate to predict VMT with reasonable accuracy. This is in spite of the fact that very high values for the coefficient of multiple correlation (R^2) were obtained.

Additionally, problems caused by correlations among independent variables limited the usefulness of the models even if errors were within the acceptable limits. Inclusion and removal of some variables changed the values of the regression coefficients and signs of remaining variables. The problem of correlation is addressed in a subsequent section. As a point of clarification, correlation among independent variables does not mean that the regression models cannot be used; rather the unique contribution or importance of each variable—as measured by the regression coefficient—cannot be uniquely determined. It changes depending on what variables are included in the model. Hence, on both accounts--large prediction error and correlation among independent variables--the county-based regression models were not useful.

Tests revealed that most of the independent variables are highly correlated (Table 11). This finding is consistent with similar efforts in other states (9). This restricts the ability to interpret the contribution of individual variables in the model.

Population	1				
Per capita income	0.463111	1			
Retail Sales	0.985234	0.489655838	1		
Employment	0.991666	0.467511402	0.994508921	1	
Earnings	0.987836	0.468945291	0.99284964	0.9988718	1

* Exact values of correlation coefficients would be different if different subsets of data are used.

 Table 11. Correlation Matrix (using data for all counties for 1993-1999)*

4.6.1.1.2 State-Based Regression Models

In this case, models are developed to predict VMT at the state level. Time-based models were found to accurately capture the VMT growth trend. The models were then used to allocate the statewide VMT to each county based on population or a combination of socioeconomic factors. A sample of the models is shown in Figure 7. It is seen that the above model closely captures the state VMT growth trend. Other variations of the above modeling approach produced comparable results.

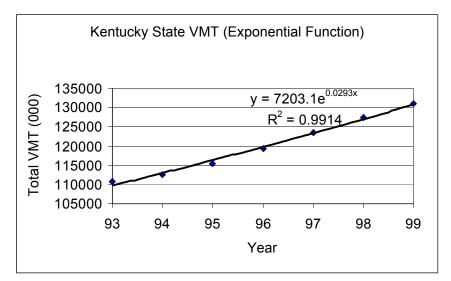


Figure 7. Prediction of State VMT (combined interstate and non-interstate VMT)

Upon allocation to counties based on population, and based on the resulting error as measured at the county-level, this approach still lacks the predictive capability desired by the KYTC (see Table 12 and Figure 8). Figure 8 shows that approximately 75% of the predictions are more extreme that the $\pm 10\%$ limits. When compared to the county-based regression models, the state-based regression models have smaller average error--but not small enough to meet the KYTC's prediction accuracy constraint.

Minimum Percent Error -74.3602

 Table 12. Percent Error at the County Level (based on state-wide models)

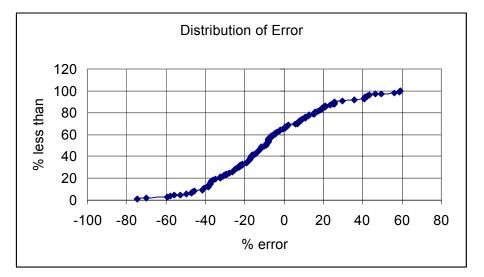


Figure 8. Distribution of Observation Error over the Error Range (interstate and non-interstate VMT combined)

4.6.1.1.3 Addressing the Problem of Correlation between Independent Variables (county-based models)

Two approaches were tried to reduce the impact of the correlation problem noted above:

- 1) Using reduced models (i.e., models with a limited number of not-highly-correlated variables) and,
- 2) Transforming the data (i.e., values of independent variables).

Although some of these attempts resulted in models that did pass standard statistical tests, they did not meet the KYTC's 10% error requirement. More specific information on these attempts is given in the following subsections.

4.6.1.1.3.1 Reduced Models

These are models with only limited number of independent variables (in some cases, only one independent variable). Variables were removed to help reduce the correlation problem. Separate models were developed to predict interstate and non-interstate VMT.

This step significantly reduced the problem of correlation. However, the predictive ability

of the models at the county level significantly diminished as well. The predictive accuracy at the county level was well below what the KYTC considered acceptable (See a sample of the models below). It is shown that the models meet important statistical quality tests; however, the models grossly under/overestimated the VMT for several counties.

a) Non-Interstate VMT (county-based): VMT(000) = 160.0720062 + 0.018500727(pop)R-Square =0.968283414 Sum of df **Squares** Regression 1 1.24E+09 Residual 838 40543035 Total 839 1.28E+09 (Equation 1)

b) Int	terstate V	MT (county-	-based)
VMT(000) =	140.0945	5954 + 0.0101	162643 (pop)
			R-Square = 0.912011105
		Sum of	
	$d\!f$	Squares	
Regression	1	3.34E+08	
Residual	278	32102339	
Total	279	3.66E+08	
			(Equation 2)

Note that based on the R^2 value and the sum of squares, the above models are very good models (i.e., high overall predictive capability). For illustrative purposes, the distribution of the errors associated with the predictions of the above two models is shown in Figure 9 and 10.

Sample of Reduced Models

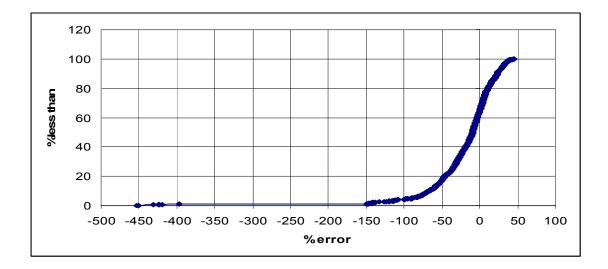


Figure 9. Distribution of Non-Interstate VMT Prediction Error over Error Range

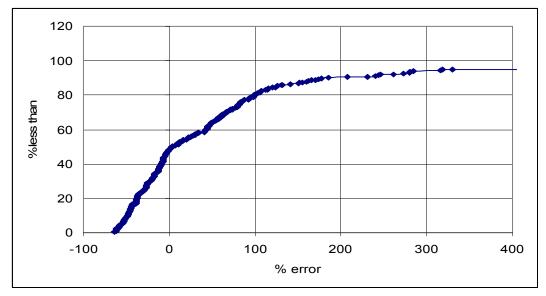


Figure 10. Distribution of Interstate VMT Prediction Error over Error Range

Figure 9 shows that only about 30% of the non-interstate VMT predictions were within the $\pm 10\%$ error limit. In the case of Interstate VMT (Figure 10) only 15% of predictions were within the $\pm 10\%$ error limit. The contrast between the quality of the models in Equations 1 and 2--as reflected by the corresponding statistics--and what Figures 9 and 10 show is striking. This demonstrates that the $\pm 10\%$ error constraint may be too stringent given the variation of VMT values in the KYTC database.

Models with other combinations of independent variables were also attempted. In all cases the models were statistically sound but failed to meet the $\pm 10\%$ prediction accuracy criterion.

4.6.1.1.3.2 Models with Transformed Data

Regression models with logarithmic forms of the data were also tried. The purpose of the transformations was to reduce the correlation problems. Because of the high correlation, the success of this attempt was only limited; the transformation of data did not eliminate the correlation problem. Specific model information is provided below.

4.6.1.1.3.2.1 County-Based Regression Models with Transformed Data

The R^2 for several of the regression models were very high (above 0.9 in some cases). Although such high value signifies successful models, this measure by itself meant very little because of the high correlation issue noted above. Additionally, the prediction error was in many cases significantly higher than the thresholds set by the KYTC. For these two reasons, the regression models were deemed inadequate to meet the objectives of this study.

As a variation and potential remedial action, a time variable was included in the models to account for possible changes in driving and travel trends that are prompted by changes in demographic and socioeconomic characteristics.

LN(VMT) =	0.152	LN(POP) +	0.527	LN(EMP) +	2.656	LN(TIME VARIABLE)
						R-square = 0.8727
		Sum of				
	df	Squares				
Regression		3 509.4516				
Residual	83	73.32543				
Total	84	0 582.777				
						(Equation 3)

a) Non-interstate VMT

(Equation 5)

b) Interstate VMT

LN(VMT) =	0.22	LN(POP) +	0.411	LN(EMP) +	1.098	LN(TIME VARIABLE)
						R-square = 0.5240
		Sum of				
	df	Squares				
Regression		3 182.0666				
Residual	27	7 160.7821				
Total	28	342.8487				
						(Equation 4)

The statistics on both models indicate that data transformation did not lead to much improvement. The time variable did not help.

4.6.1.1.3.2.2. State-Based Regression Models with Transformed Data

No state-based models were developed with transformed data. There was no need for this since the non-transformed data models met all quality requirements (when used at the state level).

4.6.1.1.3.3 Models with a K-Factor

This variation of regression models was one of the last attempts. In these models, explicit attempt was made to account for the "missing" variables. Models in this group showed more promise for predicting Interstate VMT--they were relatively more accurate than the rest. These models are described in more details in the Final Models section.

The modest success of the regression approach is apparent from the above results. The following section describes the result of the Neural Networks (NNets) approach. NNets use untraditional approach to prediction. They are presented in the following section.

4.6.1.2 NNets Results

4.6.1.2.1 Variations of NNet:

Firstly, all available independent variables were included in the Nnet. The NNet itself is used to determine the significant variables. In subsequent trials, NNets with only significant variables were used. As in the regression approach, several variations of NNet were tried:

- 1. NNets with log-transformed data. This was done because of the large differences in values of different independent variables. Very large difference can negatively impact the quality of the NNet's prediction ability.
- 2. NNets with percentage VMT change (instead of actual VMT values). This was done to avoid problems caused by similar (among different counties) percentage changes but significantly different actual VMT change.

3. NNets with an "adjustment" factor (labeled K-factor)

In brief, the NNet models resulted in significant improvements in prediction accuracy. However, they still fell short of the $\pm 10\%$ error limit for several of the counties except for the NNet with the K-factor (described in the Final Models section). The NNet with the K-factor produced significantly better results.

4.7 Final Models

From the initial results, it was very clear that some important independent variables were missing. The models presented in this section accounted for these missing variables using surrogate measures that capture the influence of those missing variables without having to explicitly determine the variables themselves. Different functional variations of the *residual* associated with each observation (county-year combination) were evaluated, and the form that showed the most potential was selected. The residual represent the difference between the actual and the predicted VMT. It results when a "first level" model is applied to predict VMT based on the independent variables.

4.7.1 Non-Interstate VMT

For non-interstate VMT, the K-factor model was NNet-based.

4.7.1.1 NNets with K-Factor

The NNet was developed through a two-level training and testing process as follows:

- 1) In the first level, a NNet was developed, and then tested on the *entire* database. (the residuals from the testing process were retained and treated as unique variables associated with the respective county-year observation).
- 2) In the second level, another independent NNet was developed through training on the 1993-1997 data and then tested on the 1998-1999 data.
- 3) The residual from the first Net was treated as an additional independent variable in the second level Net.

The above is not a standard practice when developing NNet, and should normally be used only as a last resort. The premise for this use is the following: The residual is a measure of the influence of the missing variables; if we can determine a suitable form of the residual then we may use it as a variable.

The above process was followed for both interstate and non-interstate VMT. The noninterstate VMT NNet (NIVMTNNet) generated predictions such that only one county had an error more extreme than $\pm 10\%$. The exception was Jefferson County with errors of 26% and 18% for 1998 and 1999, respectively. The following variables were used in Non-I VMT NNet-K model (LN means Logarithmic form):

- 1. LN Urban mileage
- 2. LN Population
- 3. LN Employment
- 4. LN Earnings (includes individual but not corporate earnings)
- 5. LN of number of Interstate Interchanges
- 6. LN of number of Parkway Interchanges
- 7. Residual (K-factor)

Average	Error	\mathbb{R}^2		
Training Data	Testing Data	Training Data	Testing Data	
0.0104	0.0179	0.9997	0.9987	

The error and R^2 values indicate strong prediction ability with very low error. That is consistent for both *training* and *testing* data. It should be noted that the testing data is one that was not used in developing (or training) the model. The distribution of prediction error over the error range is shown in Figure 11.

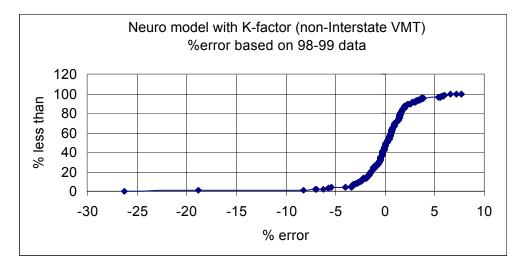


Figure 11. Distribution of Prediction Error over the Error Range (non-interstate VMT)

The interstate VMT NNet (IVMTNNet) performed poorly, and therefore the results are not presented. A regression-based model with a K-factor performed better for interstate VMT (see Section 4.7.2).

4.7.1.2 Projecting the 2000 Non-Interstate VMT

In order to test the stability of the K-factor Nnet non-interstate VMT model as a forecasting tool, the model was used to project year 2000 non-interstate VMT. The results are shown in Figure 12. The numbers on the x-axis are those of the observations—an observation is a county-year combination. It is noted that for a significant number of counties the model projects a decline in VMT, which is contrary to expectation. For many other counties much higher than "normal" increase is projected. A "normal" change for non-interstate VMT, according to the KYTC, is in the range 1-6%.

The results of Figure 12 suggest that the non-interstate VMT predictions of the NNet K-factor model are not within KYTC's "normal" range. Although this is not a calibrated/validated rule of thumb, for a large number of counties, the model projections deviate significantly from the "normal" range. More will be said on this in Section 4.8, Discussion.

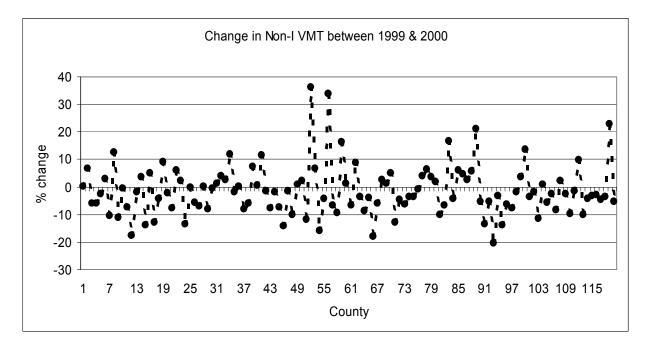


Figure 12. Projected Increase in Non-Interstate VMT between 1999 and 2000 as a percentage of 1999 VMT

4.7.2 Interstate VMT

Two different sets of "final" models for predicting interstate VMT were developed. Both are regression-based. The first uses the K-factor approach and predicts VMT at the county level directly. The second is a corridor-based model that predicts VMT based on socioeconomic factors.

4.7.2.1 Interstate VMT, K-factor Model

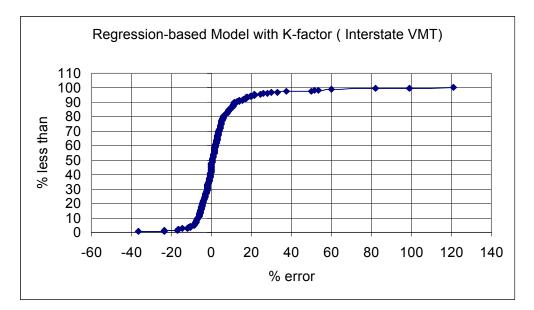
This is a regression-based model with K-factor. The model is:

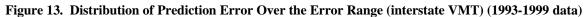
VMT
$$(000) = b + a \text{ (population)} + K$$

(Equation 5)

Where:

b:	Constant
a:	Regression coefficient
K:	K-factor


Different functional forms of the K-factor were evaluated. The best results were obtained with the following form:


K= [(minimum (Std Res)+Range /6(Year x -93)],

Where:

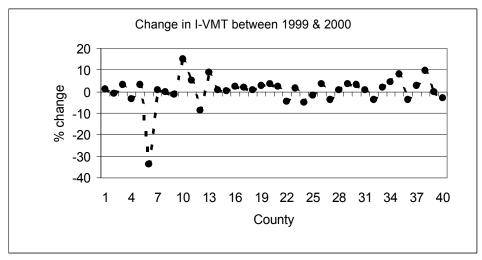
Std Res:	Standard residual obtained for the subject year obtained from the First-
	Level regression models
Range:	Range of standard residuals for the base years (1993-1999) obtained from the First-level model

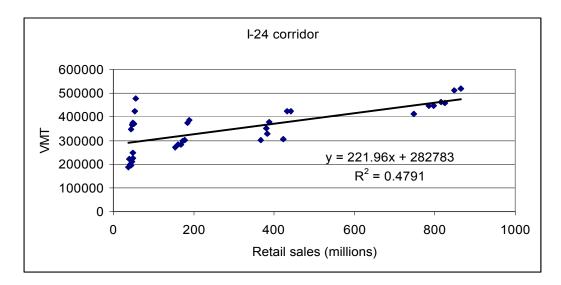
When the model in Equation 5 was applied to the 1993-1999 data, approximately 85% of the observations had errors with the \pm 10% limit (see Figure 13).

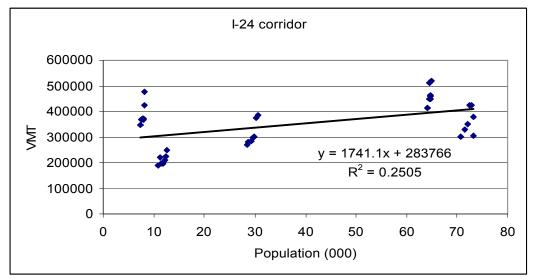
4.7.2.2 Projecting the 2000 Interstate VMT

The K-factor interstate VMT model was used to project the 2000 interstate VMT. Because no residual is available for the projected year, the K factor value for 1999 is used. The results are shown in Figure 14. It is noted that for a few counties negative VMT change was projected and for some the projections are unrealistically high.

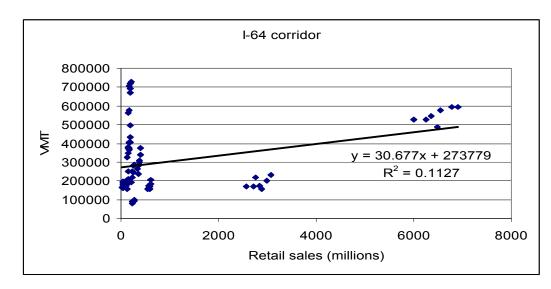
Application of the model to project the 2010 and 2020 VMT resulted in noticeably low projected VMT values. Although population did not grow--even declined--for some counties, that alone cannot account for the low VMT projections. The K factor is suspect in this case. The K-factor for future years is, by definition, not known. Use of such K-factor values may have introduced unrealistic biases.




Figure 14. Projected Increase in Interstate VMT between 1999 and 2000 as a Percentage of 1999 VMT


4.7.2.3 Corridor-Based Models

This model was developed according to the following steps. Regression and Neural Net models were tried:


- 1. For a given county and interstate route, determine an ADT growth factor by examining data for different count stations. If applicable, different growth rates may need to be generated for different sections of the interstate route.
- 2. Determine the VMT for respective sections of the interstate route for each year from the ADT and mileage of the section.
- 3. Develop a model for each corridor and regress VMT against appropriate socioeconomic variables for the counties comprising the corridor,.
- 4. Use models generated in Step 3 to project future VMT.

A model is developed for each corridor (as contrasted with previous models where one model was developed for all corridor/counties). Figure 15 shows a sample of the regression models for two corridors. Population and retail sales-based models are shown. Figure 16 shows a sample of the NNet models.

b)

a)

c)

4.7.2.3.1 Assessment of Regression Corridor-based Models

Figure 15 demonstrates clearly that the regression corridor-based models do not have sufficient predictive ability. The same conclusion holds true after the models were normalized for the length of interstate route sections in the respective counties.

4.7.2.3.2 Assessment of NNet Corridor-based Models

Figure 16 demonstrates that the NNet-based models are capable of predicting the *general* trend in VMT for the various counties. However, the level of accuracy is not sufficient given the accuracy constraints set for this study. Figures 16a and 16b show the *training* (1993-1997) and *testing* (1998 & 1999) data results, respectively. In both graphs, the x-axis shows observation numbers and the y-axis shows VMT values. While the match is overall close between the actual and predicted VMT, it is not close enough to be of sufficient accuracy.

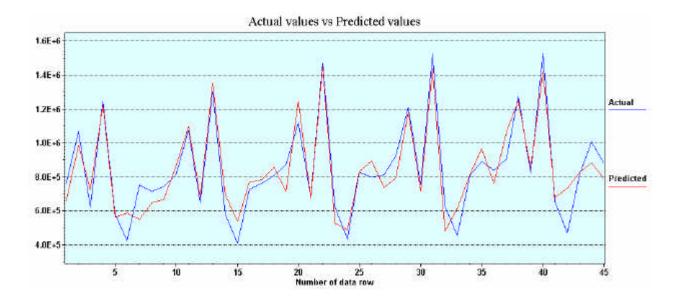


Figure 16a. Comparison of Actual and Predicted VMT - Training Data (Interstate 75 Corridor)

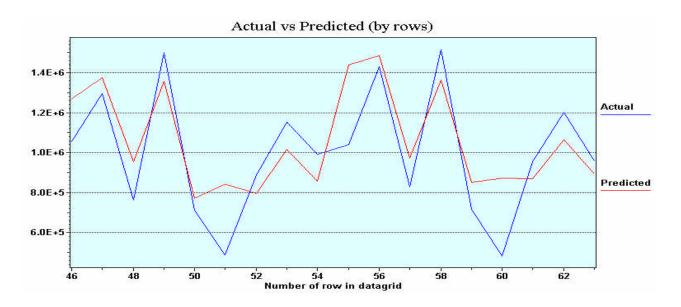


Figure 16b. Comparison of Actual and Predicted VMT - Testing Data (Interstate 75 Corridor)

4.7.2.3.3 Corridor-based Models: Are Interstate-VMT and Socioeconomic Factors Related?

The above question became necessary to address after the corridor-based models did not bring in any improvement over the previous ones. The question was addressed by examining the relation between change in interstate VMT and socioeconomic factors. A sample of the results for I-24 and I-64 corridors are shown in Figures 17 and 18, respectively. The results are for yearly changes from 1993 to 1999.

Figures 17 and 18 demonstrate one important piece of information: the association between change in interstate-VMT and socioeconomic measures is very weak. In fact, one can assert based on the above two figures that there is no relationship between change in Interstate-VMT and the socioeconomic variables that are used in this study. It seems that other variables need to be identified, or a completely different basis should be explored.

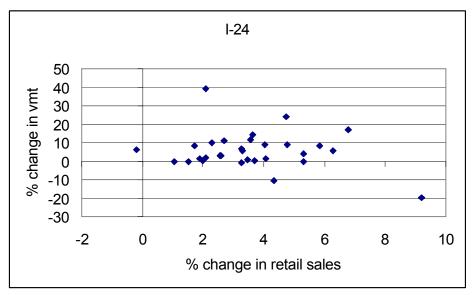
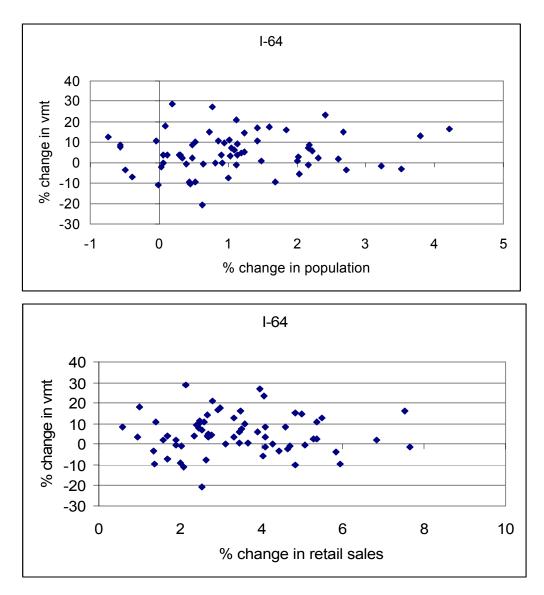
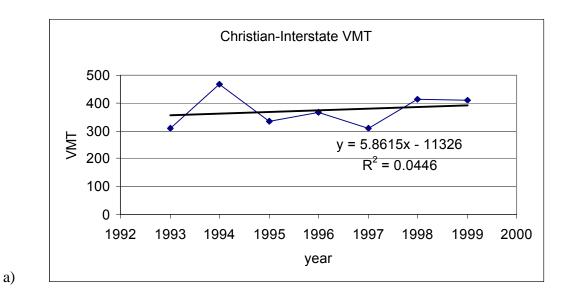
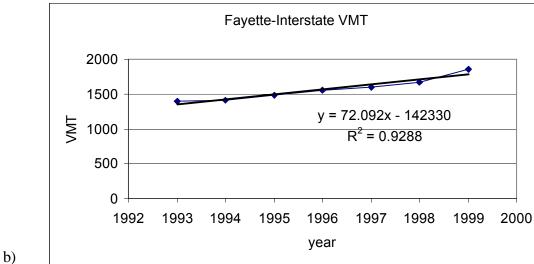
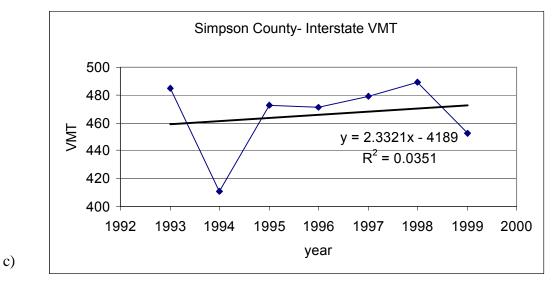


Figure 17. Relationship between Change in Interstate VMT and Retail Sales (Interstate 24 Corridor)


Figure 18. Relationship between Change in Interstate VMT and Retail Sales (Interstate 64 Corridor)


4.8. Discussion

The limited success of the VMT modeling effort prompted an inquiry into the possible reasons. First, the VMT data was examined. Yearly trends and the magnitude of variation in a given county were evaluated. A sample of the results is shown in the following figures. In each case, the closest linear regression model is shown.

Figure 19 shows yearly interstate VMT variation for four representative counties. The wide variation between successive years is clearly demonstrated in the two figures.

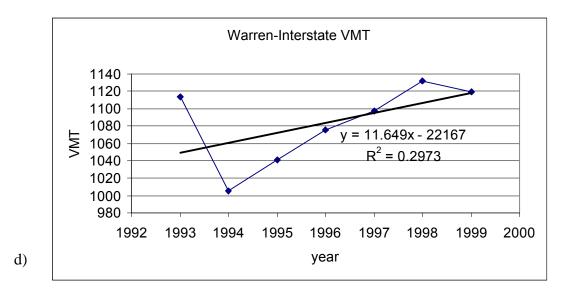


Figure 19. Variation of VMT over Time for Selected Counties (VMT Figures are in Thousands)

For interstate VMT, the normal growth should be around $3\%^1$. Given this rule, approximately 25% of the observations had less than 0% growth and 50% had more than 5% growth (Figure 20). In other words, about 75% of the cases in the database have yearly growth outside the "normal" range.

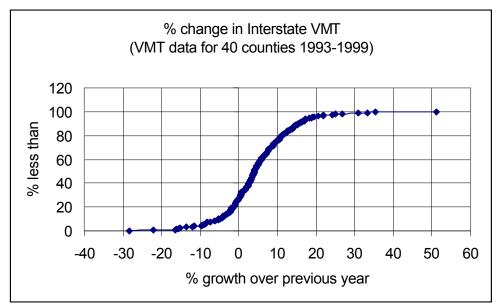


Figure 20. Distribution of Yearly Interstate VMT

¹ Rule of thumb used by KYTC to check Interstate VMT growth.

The same general observation is true of non-interstate VMT as shown in Figure 21. In many cases growth was more than 6%, and in a significant number of cases the growth was less than -3%. The normal expected yearly growth is $1-6\%^2$. Given this rule, about 32% of the observations had less than 1% growth, and 15% had more than 6% growth. That is, over 47% of the yearly growths were outside the range.

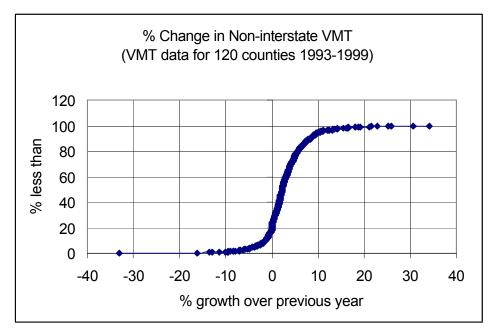


Figure 21. Distribution of Yearly Non-Interstate VMT

Such wide variations indicate unsystematic ways of generating VMT. With such variations, modeling is almost impossible because yearly trends for different counties is significantly different and, at times, completely opposite. The following comments can be made with regard to the information shown in Figures 19 through 21:

- 1. Some yearly VMT changes are well beyond the established "normal" ranges
- 2. Unsystematic changes are not too uncommon
- 3. Approximately 47% of non-interstate VMT yearly changes, and 75% of interstate VMT yearly changes are OUTSIDE the "normal" range

It should not come as a surprise that no model could meet the stringent, but seemingly unsupported "normal" yearly growth ranges. In fact, it is completely unrealistic, given such wide VMT yearly variations, to expect the generated models to predict completely different and much lower variation. There was a mismatch between the type of VMT data used and the VMT error and yearly variation thresholds established for this study. Those thresholds were unattainable right from the onset. This, however, was not realized until the VMT data was diagnosed in the later stages of the project.

² Rule of thumb used by KYTC to check Non-Interstate VMT growth

4.9 Conclusion

The objective of this research was to develop models that predict VMT based on socioeconomic data inputs. Two modeling approaches were used to develop models for both interstate and non-interstate VMT: Linear Regression and Neural Networks (NNet). Models from both approaches were evaluated for soundness and usability. Although statistically sound models were developed, success to achieve the stated objective was only modest. The following specific conclusions can be drawn based on the aforementioned results.

- Predicting VMT based on socioeconomic data (independent variables) was not successful.
- Currently available socioeconomic data has the potential to predict non-interstate VMT for most counties. However, more data refinement and modeling is needed to develop more reliable and accurate models. Additional variables may also be necessary
- Neural Networks has shown significant potential for use as a modeling technique. Their flexibility and unconventional approach make them particularly suited when the patterns of the data that is to be modeled are complex.
- Results from the *corridor-based* interstate VMT models are not much different than earlier models; prediction accuracy is still not sufficient. For corridor-based models, using NNets produced better results than regression.
- Although NNets models were generally better than regression models, that should not be construed as a statement against regression. The nature and structure of the data determine which modeling approach is better.

4.10 Recommendations

Based on the results presented thus far, the following recommendations are made:

- More than one approach should be used to predict future VMT so as to minimize the effect of biases that are present in any one single modeling approach.
- Time series models were shown to have very good predictive capability. They should be considered when sufficient independent variables are either not available or incapable of producing models with sufficient predictive capabilities.
- Neural Nets should be seriously considered in future research where the objective is to learn complex relations. They have demonstrated great capability of interpolating and extrapolating from known cases, and then generalizing this knowledge to cases that were not used in the training.
- A refinement of the models developed in this study is recommended. As part of this exercise, only basic (not processed) data should be should be modeled. Based on the data available to the KYTC, this means that only traffic volumes may be predicted based on socioeconomic input variables. VMT can then be estimated based on road mileage and traffic volume.
- It is recommended that regional and national variables be used to predict interstate VMT. However, for such variables to be useful they have to be available for future years.

- Because of the high correlation among several of the socioeconomic data variables, it is important that regression-based models be used carefully particularly when several socioeconomic variable are significant.
- It is appropriate to suggest that improved procedures are needed for screening anomalies and errors out of the KYTC traffic count data because of the influence that an aberrant count can have on the change in county level VMT from year to year.

5.0 DEVELOPMENT OF RATIOS FOR RELATIONSHIP BETWEEN COLLECTORS AND LOCAL ROADS

5.1 Local to Collector Ratio Analysis

In the determination of local VMT, it is necessary to have county level local ADT and local road mileage. Historically, the KYTC Division of Planning has collected local road (both state maintained and non-state maintained) ADT on a periodic basis. A portion of these counts was collected for local HPMS sampling required by the FHWA on a regular basis.

The logistics of collecting local road ADT on a statewide basis can be difficult. Therefore a procedure was developed to relate functionally classified local roads and functionally classified collector roads. This relationship consisted of a ratio between local ADT and collector ADT. The numerator of the ratio was defined as the average ADT for a specified grouping of local roads, while the denominator was defined by the average collector ADT for the same grouping of roadways.

Separate ratios were determined for rural functional classifications (FC 09/FC 08) and for urban functional classifications (FC 19/FC 17). These relationships were developed for groupings of both urbanized and non-urbanized counties. The urbanized counties utilized in this analysis were defined as follows: Boone, Boyd, Bullitt, Campbell, Daviess, Fayette, Greenup, Henderson, Jefferson, Jessamine, Kenton, and Oldham.

It was determined that additional analysis was necessary to further evaluate this relationship. The remainder of this section will outline the procedures that were utilized to evaluate these ratios. The ratios previously utilized that were developed by the Division of Planning are contained in Table 13.

Highway Grouping	FC 9/FC 8	FC 19/ FC 17
Non-Urbanized Counties	0.33	0.12
Urbanized Counties	0.33	0.28

Table 13. Historical Functional Class Ratios

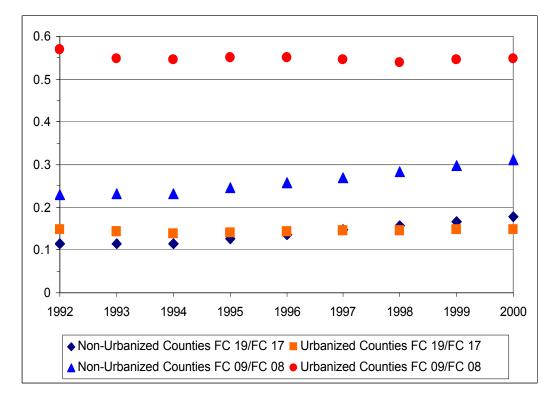
The ratios contained in Table 13 were developed from a single years worth of data. In the development of these ratios, some concern was expressed that these ratios may change over time. One of the objectives of this effort was to determine the behavior of this relationship.

5.2 Data Analysis

To evaluate the potential change in this relationship over time, the research effort utilized the data maintained in the Traffic Volume System (TVS) maintained by the Division of Planning. Historical data from 1980 through 2000 were utilized in the analysis. The typical schedule for traffic counting in Kentucky has been as follows: 1) interstates and parkways, every year; 2) HPMS samples, every 3 years; 3) coverage counts on the remaining sites every six years. This schedule was typically utilized for all state maintained routes within the state. Functionally classified local roads that were not state maintained were also counted on a periodic basis; however, this data is sporadic and may have more than six years between actual counts.

After review of the available data, it was determined that data used to calculate the numerator of the FC ratio should be obtained from historical local HPMS samples. While the data used to calculate the denominator should be from all collector routes (FC 08 or FC 17).

The TVS contains the historical record for every traffic monitoring station utilized in Kentucky; and as was previously mentioned, actual traffic counts are not obtained on all stations each year. The TVS provides estimates for years when actual data is not available. Therefore, a complete history of each traffic volume station is available. This estimating procedure is outlined in Appendix E. Since the estimating procedure utilizes counts that are defined as actual counts (meaning some type of field count was actually performed), stations to be used in the analysis were restricted to those that had at least two actual counts since 1980. TVS also identifies stations that have had significant traffic impact events in a given year. Only data from these impact years until the year 2000 were utilized in the analysis.


To determine the ratio for each of the groupings outlined in Table 13, the numerical average of the annual ADT for all stations within a grouping, FC 19 urbanized counties for example, was determined.

Similar annual averages were determined for the other groupings. The calculation of these annual average ADTs provided the necessary information to compute the following functional class ADT ratios:

FC 09/FC 08 Urbanized Counties FC 09/FC 08 Non-Urbanized Counties

FC 19/FC 17 Urbanized Counties FC 19/FC 17 Non-Urbanized Counties

To evaluate the relationship of this ratio with time, an individual FC ratio was determined for each year from 1980 - 2000. Due to an increase in the local sample size in 1991, only data from

1992 through 2000 are used in the final evaluation. These ratios calculated for the years 1992 - 2000 are plotted in Figure 22.

Figure 22. Comparison of Functional Class Ratios

It may be seen from Figure 22 that there is very little difference between the urbanized and non-urbanized FC 19/FC 17 ratios. Therefore it was determined that for the remaining analysis a single FC 19/FC 17 ratio would be determined for all counties.

Functional class ADT ratios were determined using both numerical average ADTs each year and ADTs calculated using a weighted average approach. The weighted average ADTs were determined using the length of the highway the traffic volume station represents as the weighting factor. Therefore, a station representing a longer length would have more of an impact on the resulting weighted average than that of a station representing a shorter length. The resulting functional class ratios for each grouping for both weighted and non-weighted ADT averages are given in Figure 23 - 25.

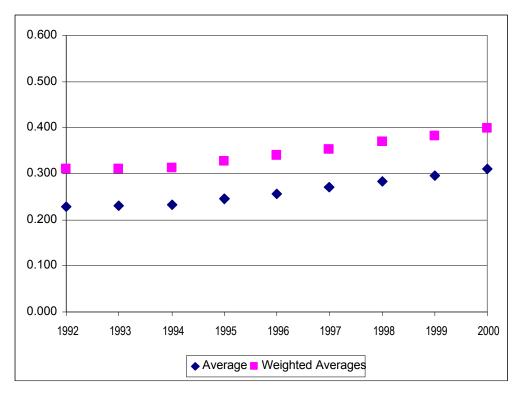


Figure 23. Non-Urbanized Counties Functional Class Ratio FC 09/08

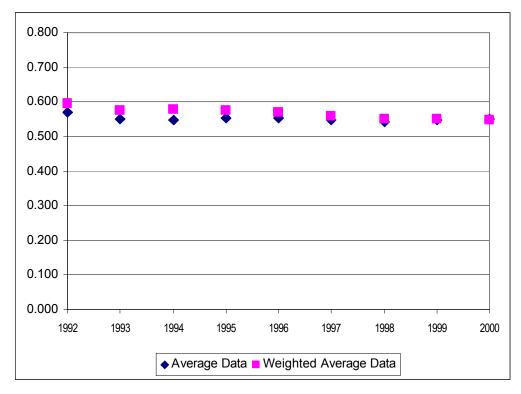


Figure 24. Urbanized Counties Functional Class Ratio FC 09/08

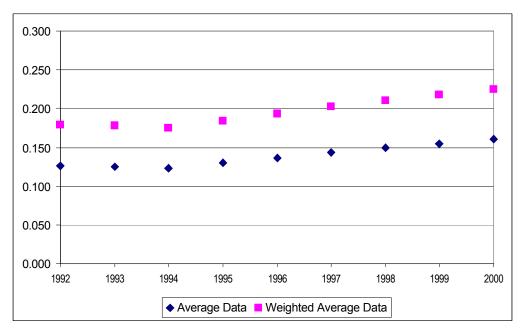


Figure 25. All Counties Functional Class Ratio FC 19/17

It may be seen from these figures that the ratio between the ADT of local routes (FC 09 and 19) to that of collector routes (FC 08 and 17) appears to change with time. In addition, the use of weighted or arithmetic averages of functional class ADT also changes the magnitude of the ratio. This is due to the effects of station length on the resulting average. Stations representing short sections of roadway would have very little impact on the resulting weighted average, but would have equal impact as other stations on the arithmetic average. While stations representing long lengths would have a greater impact on the weighted average and equal impact on the arithmetic average.

There are many issues that could affect these ratios, such as the representation of the roadways that are sampled. The sample of the collector routes would be assumed to be complete, since all routes functionally classified as collectors would have traffic counts available. The local HPMS data utilized may not provide a representative sample of all local routes. The data available in the HPMS sample has primarily been obtained on state maintained local routes. There are many routes that are functionally classified as local routes but are maintained by other jurisdictions, and therefore are not included in the Transportation Cabinet's traffic monitoring system.

5.3 2000 Local Sample

As a means to address the situation outlined in the previous section regarding having representative samples of local roads, a number of counties were selected in the year 2000 to obtain a statistically based sample of all local roads. The selection of these sample locations has been addressed in Section 3.0 of this report.

After review of the historical data in conjunction with the 2000 local samples taken, it

was determined that the sampling of the previous local counts may not have included a representative sample of all local routes within a county. Therefore it was determined that the 2000 local sample would provide a more representative sample and therefore should be used for the analysis of a relationship between local and collector ADT.

The average ADT for the local roads sampled in each county and the corresponding collector ADT are contained in Table 14 for rural routes and Table 15 for urban routes.

County	Collector	Routes	Local Routes		
Name	ADT	Mileage	ADT	Mileage	
Allen	672	87.6	213	450.5	
Barren	584	127.5	153	604.3	
Boyd	527	35.2	335	83.1	
Clark	825	64.0	280	225.2	
Franklin	884	75.8	299	227.2	
Garrard	539	52.7	295	236.4	
Grant	937	56.7	222	349.4	
Green	348	91.2	118	381.2	
Henderson	638	107.2	188	458.6	
Henry	592	106.8	163	238.8	
Kenton	569	28.5	154	106.7	
Laurel	798	93.0	263	826.3	
Lawrence	907	64.6	137	362.7	
Leslie	870	72.0	220	349.8	
Lewis	502	83.3	183	395.0	
Lyon	550	57.7	103	452.9	
McCracken	891	68.9	180	212.2	
McCreary	878	96.0	164	542.2	
Mercer	467	63.1	166	256.3	
Muhlenberg	1,292	122.7	191	565.7	
Nelson	696	105.4	192	355.6	
Owen	423	65.7	180	276.2	
Perry	1,031	94.7	272	338.8	
Pike	1,659	178.5	395	690.4	
Shelby	738	111.9	222	278.4	
Wayne	540	103.3	117	405.6	
Wolfe	349	49.1	86	251.3	

 Table 14. Average FC 08 and FC 09 ADT for 2000 Local Sample Counties

	Colle	ctor	Local R	outes
	ADT	Mileage	ADT	Mileage
Barren	3,327	10.1	592	26.4
Boyd	3,773	31.9	313	334.2
Clark	2,815	11.1	676	54.3
Fayette	4,121	158.8	706	739.8
Franklin	3,675	19.9	584	114.1
Henderson	3,519	27.1	523	107.7
Kenton	4,976	66.1	600	564.4
Laurel	2,297	7.9	519	54.1
McCracken	3,928	29.1	390	236.3
Mercer	4,506	7.4	507	35.7
Nelson	2,255	6.6	919	41.9
Perry	4,078	4.5	472	31.7
Pike	2,551	6.0	655	15.2
Shelby	2,749	9.1	558	40.6
Wayne	1,367	6.5	438	15.2

Table 15. Average FC 17 and FC 19 ADT for 2000 Local Sample Counties

The data contained in these tables were utilized to develop a relationship between local road ADT and collector ADT. The data in Tables 14 and 15 is expressed graphically in Figure 26.

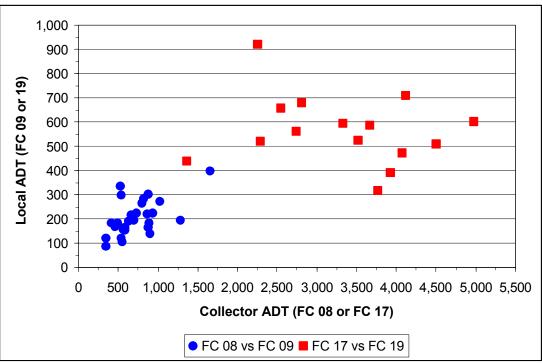


Figure 26. Comparison of Collector ADT and Local ADT

It may be see from this figure that there appears to be a relationship between collector ADT and local ADT for the sampled counties. Several different relationships were evaluated to determine the most appropriate model to characterize this relationship, including multivariate regression, simple ADT ratios, and several least squares regression models. Regression models were evaluated for the data set as a whole and by separating the local and urban functional classifications.

The multi-variant regression analysis utilized the following variables:

Rural Collector ADT	Rural Local Road Mileage
Retail Sales	Earnings
Rural Collector Mileage	Licensed Drivers
Population	Employment

After evaluation of this model, it was determined that it did provide a means to predict local road ADT. However the ability to obtain accurate data for each of the independent variables for future years may be difficult. Therefore it was determined that a relationship utilizing collector ADT as the independent variable would be more appropriate. Therefore, the following types of relationships between functionally classified local road ADT and functionally classified collector ADT were utilized.

Linear	Local ADT = A x (Collector ADT) + B
Logarithmic	Local ADT = A x $(LN(Collector ADT) + B)$
Power	Local ADT = A x (Collector ADT) ^B
Average Ratio	Local ADT/Collector ADT

The linear relationship and the average ratio procedure were evaluated for both rural and urban classifications separately and for all local sample counties combined. The logarithmic and power relationships were evaluated for the entire 2000 local sample combined. The results of each of these models are presented in Figure 27.

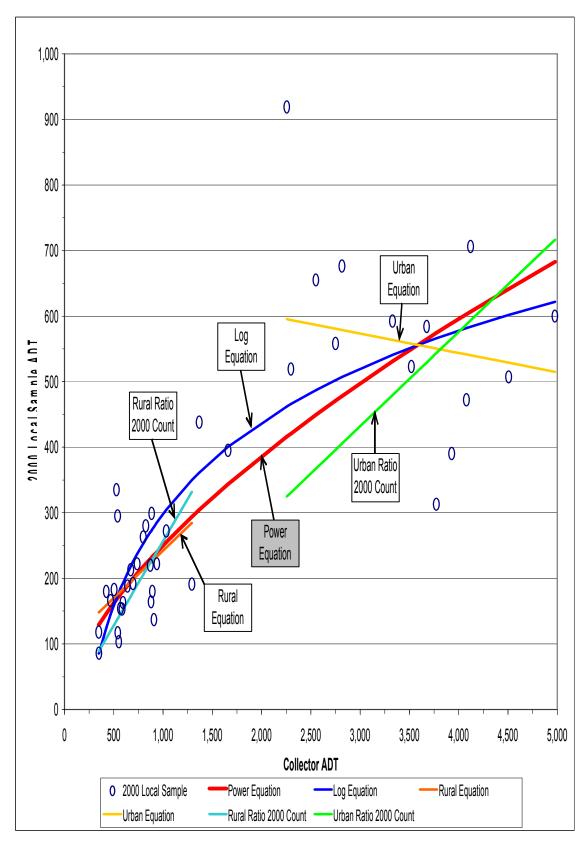


Figure 27. Comparison of Predictive Relationships

Each of these models was evaluated for both goodness of fit and the ability to predict local ADT beyond the limits of the 2000 local sample data. Based on these criteria, it was determined that the power equation best represents the relationship between local and collector ADT. The relationship provides a good fit of the collected data with a R^2 of 0.73 and has the ability to predict reasonable local ADT even at very low levels of collector ADT. The resulting equation of the best-fit line is as follows:

Local ADT = $3.3439 \text{ x} (\text{Collector ADT})^{0.6248}$

6.0 DEVELOPMENT OF COUNTY-LEVEL GROWTH RATES

6.1 Growth Rate Development

In many instances in traffic planning, it is necessary to assess the historical growth of vehicle traffic. This traffic growth may be obtained from historical data for individual traffic monitoring stations or groupings of stations. Data obtained from the TVS was again utilized to analyze the traffic growth characteristics of various groupings of highways. The same procedures were followed in the selection of data for the analysis of traffic growth as were utilized in selection of stations used for the analysis of the functional class ratio procedure. The stations utilized were required to have had at least two actual counts since 1980 or since a traffic impact year was identified. Both actual traffic counts and computer estimates were utilized in developing the database for analysis. The analysis of traffic growth was limited to data from 1991 through 2000 for all functional classes with the exception of FC 09 and 19. The analysis of these functional classes was limited to 1992 through 2000 for the reasons previously stated in 5.0.

In the analysis of the growth of a specific grouping of stations, data were obtained for each station within the group for the years 1991 through 2000 (1992 – 2000 for FC 09 and 19). The average ADT, both weighted and unweighted, was determined for all stations within the grouping for each year. The weighted ADT is determined using the length which the station represents as the weighting factor while the unweighted ADT is a simple arithmetic average of all the stations. This resulted in a single average historical ADT for this group for every year. This is illustrated in Figure 28 for functional class 06 in Allen County. It may be seen from this figure that there were four functional class 06 stations in Allen County. The resulting blue line with round symbols indicates the annual unweighted average for these stations. A similar plot could be generated for weighted annual ADT. A linear regression analysis may then be performed on the average annual ADT. This is illustrated in Figure 29.

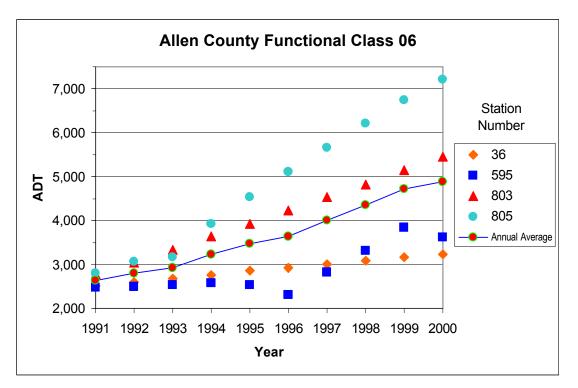


Figure 28. Allen County Functional Class 06 Traffic Monitoring Stations

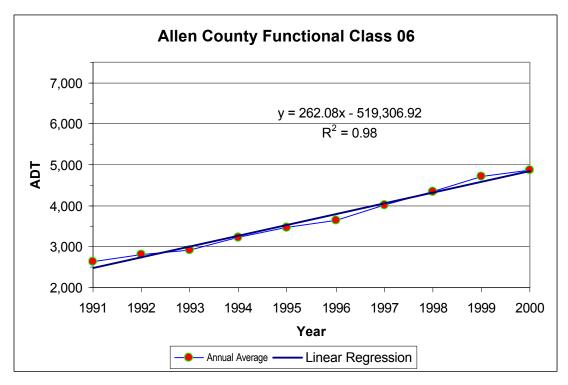


Figure 29. Average Annual Functional Class 06 ADT for Allen County

The equation has the form of a straight line, y = mx + b, where "y" is the resulting ADT and "x" is the year of prediction, and "m" and "b" are regression coefficients. The slope term of the linear regression "m" may be utilized to calculate a growth rate for the grouping of stations. The slope represents the average change in ADT between each year throughout the history of the station. This slope may be utilized in conjunction with a single years ADT to determine an individual year's growth rate. For the purpose of this project, growth was defined as the slope of the regression line divided by the predicted year 2000 ADT multiplied by 100. The resulting growth rates may then be expressed as a percent. For the example given in Figure 28 and 29, the growth rate would be determined as follows:

$$\frac{\text{Regression Slope}}{\text{Year 2000 ADT}} \times 100 = \text{Growth Rate}(\%) \implies \frac{262.08}{4,853} \times 100 = 5.4\%$$

These types of calculations were carried out for each functional class in each county. The results of this analysis are given for both weighted and unweighted ADT in Appendix F and Appendix G, respectively.

A statewide summary of these results is given in Table 16. This table shows the numerical average of all the individual county level growth rates for both weighted and unweighted ADT.

		Functional Class										
	01	02	06	07	08	09	11	12	14	16	17	19
		Growth Rate (%)										
Unweighted ADT	3.40	3.01	2.09	1.71	1.64	1.95	3.34	2.63	2.02	1.48	1.01	1.95
Weighted ADT	3.32	3.15	2.18	1.80	1.79	2.31	3.37	2.81	2.19	1.54	1.35	2.08

 Table 16. Summary of Statewide County Level Functional Classification Growth Rates

It may be seen from the tables in Appendix F and Appendix G that counties actually have negative growth rates. These negative growth rates were included in the above averages.

6.2 Statewide Functional Class Averages

The statewide unweighted average annual ADT for FC 01 and 11 are given in Figure 30. These averages were determined by averaging all FC 01 or FC 11 stations for a given year. A linear regression line is also provided in the figure. The results of this regression yield growth rates of 3.53% and 3.07% for functional class 01 and 11 respectively.

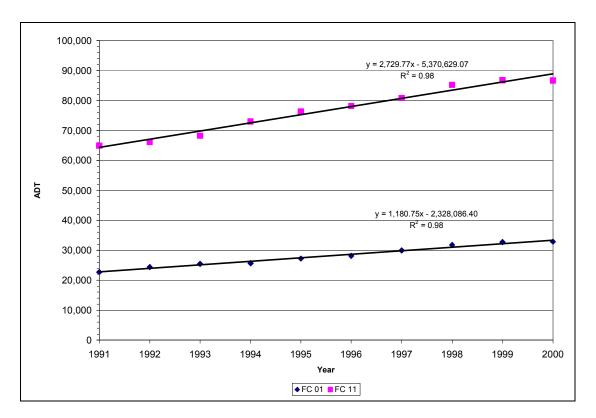


Figure 30. Statewide Unweighted Average ADT for Functional Class 01 and 11

Similar plots for the rural functional classifications and urban functional classifications are given in Figures 31 and 32 respectively. The results of the linear regression for each of these ADT histories are given in Table 17 along with the results obtained from weighted average ADT.

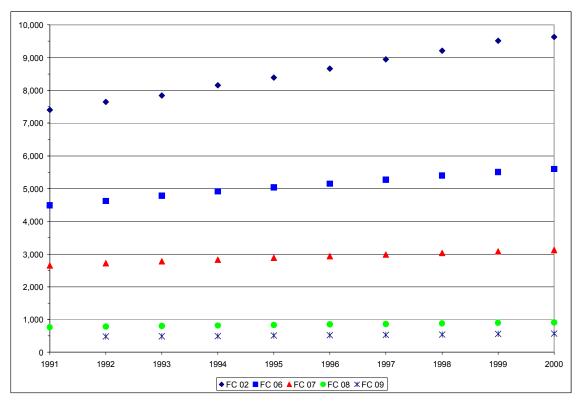


Figure 31. Statewide Unweighted Average ADT for Rural Functional Classes

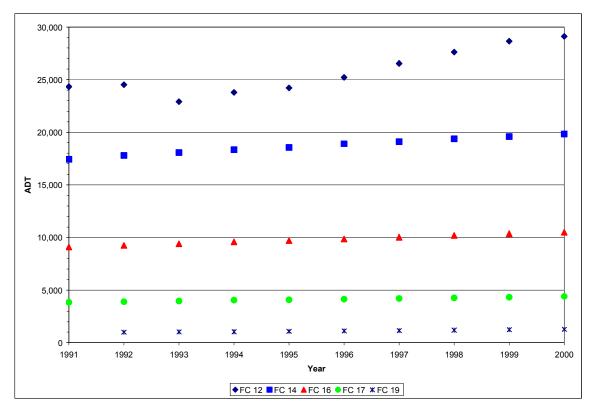


Figure 32. Statewide Unweighted Average ADT for Urban Functional Classes

		Functional Class										
	01	02	06	07	08	09	11	12	14	16	17	19
			1	1	G	rowth	Rate (%)				
Unweighted ADT	3.53	2.67	2.20	1.67	1.73	2.05	3.07	2.22	1.32	1.48	1.44	2.76
Weighted ADT	3.51	3.21	2.39	1.82	1.89	2.67	2.94	2.65	1.58	1.77	1.95	3.44

Table 17. Summary of Statewide Functional Class Growth Rates

6.3 Interstate Corridor Analysis

Interstate functional class growth rates based on weighted ADT have been determined for each individual interstate corridor. These results are given in Table 18. Interstate corridors for I-64, I-71, and I-75 have been further broken down into urban and rural counties. These county groupings do not necessarily correspond to the standard functional class groupings of FC 01 and 11. These results are given in Appendix H.

Interstate Route	Average ADT	Weighted Average ADT	Predicted Weighted Average ADT	2000 Weighted ADT Growth Rate (%)	Regression Slope	Regression Constant
24	23,543	22,019	21,790	4.22	919	-1,817,117
64	42,767	31,560	32,032	2.95	945	-1,857,131
65	61,502	50,208	50,619	2.48	1,253	-2,455,654
71	37,062	34,904	34,599	3.46	1,196	-2,357,128
75	68,025	50,532	51,707	3.70	1,911	-3,770,625
264	113,095	100,494	108,877	4.24	4,618	-9,127,772
265	52,292	50,953	50,629	2.47	1,251	-2,452,021
275	78,350	68,291	68,199	4.74	3,233	-6,398,578
471	98,740	95,656	96,142	1.86	1,786	-3,476,124

Table 18. Interstate Corridor Weighted ADT Growth

7.0 REFERENCES

- 1. <u>Traffic Characteristics of Kentucky Highways 1997</u>. Frankfort, KY: Commonwealth of Kentucky Transportation Cabinet, Division of Transportation Planning.
- 2. "The Regional Transport of Ozone: New EPA Rulemaking on Nitrogen Oxide Emissions." <u>http://www.epa.gov/ttn/otag/about 1.html</u> (April 22, 1999).
- 3. "HPMS Field Manual-December 1999: Chapter 7: Sample Selection and Maintenance" http://www.fhwa.dot.gov/ohim/hpmsmanl/chap7.pdf (February 28, 2001).
- Crouch, J.A., Seaver, W.L., and Chatterjee, A. "Estimation of Traffic Volumes on Rural Local Roads in Tennessee." <u>Transportation Research Board 80th Annual Meeting</u>. CD-ROM. 2001.
- 5. Niemeier, Debbie, J. Morey, J. Franklin, T. Limanond, K. Lakshminarayanan, *An Exploratory Study: A New Methodology for Estimating Unpaved Road Miles and Vehicle Activity on Unpaved Roads*, February 1999, pp. 55, ITS-Davis Pub # RR-99-2.
- 6. Woods and Poole Economics, Inc. 1740 Columbia Road NW, Suite 4, Washington, D.C. 20009.
- 7. Sartori, A.: "Applied Thought", Traffic Technology International 2001, pp 146-149, 2001.
- 8. Haykin, S.: Neural Networks: A Comprehensive Foundation. IEEE Press, 1994.
- 9. Iskander, W., Jaraiedi, M., Thomas, T., & Martinelli, D.: "Traffic Volume Projections in West Virginia and the I-81 Corridor". Final Report, West Virginia Department of Transportation, 1996.
- 10. Fricker, J.D. & Saha, S.K.: "Traffic Volume Forecasting Methods for Rural State Highways". Final Report, FHWA/IN/JHRP-86/20.

8.0 APPENDICES

8.1 Appendix A – Kentucky Year 2020 VMT Forecast Procedures

KYTC VMT Forecasting Procedure Overview

Given the significant and non-demographic based influence of Interstate highway travel on vehicle miles traveled (VMT) in many counties, the KYTC's VMT forecasting procedure splits total VMT into two categories for forecasting purposes - Interstate and non-Interstate. Growth in VMT is forecasted first at the statewide level and then allocated to the county level. Non-Interstate VMT is then split into the functional class categories (including local) based on historical, county-specific percentages.

For non-Interstate travel, VMT growth is linked to population growth. Statewide VMT growth is forecasted using a population based linear model and a forecast of Kentucky's future population for the desired target year. This model is revised each year with the incorporation of an additional year of historical data. Because of a strong linear relationship between statewide population and statewide VMT and because statewide (and county-level) population estimates and forecasts exist and are widely accepted, the use of population change makes for a convenient and defensible method for forecasting (and subsequently allocating) statewide VMT growth. The difference between the base year (the most recent year for which estimates are available) estimate and the target year forecast establishes a statewide control total for non-Interstate VMT growth. This growth is then allocated to the counties based on a combination of county population change and the model-derived projected increase in VMT per person per year.

For Interstate travel, it is felt that the relationships between county level demographic variables and VMT are much less cause-and-effect in nature than for non-Interstate travel. Therefore, VMT growth is projected using growth rates determined from historical trends and assumed changes in the growth rate over time. Changes in the growth rate over time are based on the expectation that Interstate travel will continue to increase at a higher rate than non-Interstate travel, but that the rate of increase will likely flatten out somewhat due to various reasons (capacity restraint and the mathematics of compound interest being two of the primary reasons).

Kentucky Year 2020 VMT Forecasts

This appendix describes the methodology and assumptions used to develop year 2020 forecasts of vehicle miles of travel (VMT) for Kentucky's 120 counties.

Data Available:

- 1. Statewide VMT from HPMS for the years 1980 1998.
- 2. VMT by county and functional class for the years 1993 1998.
- 3. Statewide population estimates for the years 1980 1998.
- 4. County level population estimates for 1998.
- 5. County level population forecasts for 2020.

Data Adjustments

The need to create county level VMT estimates required improved procedures for estimating local VMT. Prior to 1998, local VMT had been estimated based on a statewide average local ADT and local mileage. This procedure was insensitive to differences in the magnitude of travel on the local system from county to county. In 1998, a procedure (Collector Ratio Method) was developed to estimate county level differences in local travel based on travel on the collector system. This procedure, which produced significantly improved estimates of county level local VMT, also produced a slight increase (2.57%) in the total estimated statewide VMT. Because of file format changes over time, it was practical to apply the revised procedure to historical VMT estimates back to 1993 only. For consistency purposes, statewide total VMT estimates for the years 1980 - 1992 were increased by 2.57%. These calculations are documented in Table 1 of the KYTC VMT forecasting spreadsheet. This spreadsheet is summarized and illustrated on pages (p. 74-86).

Basic Procedure

Given the significant and non-demographic based influence of Interstate travel on VMT in many counties, the decision was made to split VMT into two categories for forecasting purposes - Interstate and non-Interstate. Growth in VMT was forecasted first at the statewide level and then allocated to the county level.

For non-Interstate travel, VMT growth was linked to population growth. Statewide VMT growth was forecasted using a population based linear model and a forecast of Kentucky's year 2020 population. The growth in statewide VMT was then allocated to the county level VMT based on county level population growth and the model estimated increase in VMT/person/year.

For Interstate travel, the relationships between county level demographic variables and VMT are of a much less cause-and-effect nature. Therefore, VMT growth was based on historical trends and assumed changes in the growth rate over time.

Non-Interstate VMT Forecast Details

Table 2 shows statewide population and VMT estimates for the years 1980 - 1998 and a forecast of Kentucky's year 2020 population. The source of the population data was the Kentucky State

Data Center (see <u>http://cbpa.louisville.edu/ksdc/</u>). The source of the VMT data was the Highway Performance Monitoring System (HPMS), and the estimates for 1980 - 1992 were factored as described above under Data Adjustments. The Excel forecast function was used to determine a linear model to predict statewide VMT from statewide population based on the 18 years of data. As can be seen in Table 2, a strong linear relationship exists between statewide population and VMT ($R^2 = 0.84$). Furthermore, because statewide and county-level population estimates and forecasts exist and are widely accepted, the use of population change makes for a convenient and defensible method of forecasting VMT. A year 2020 forecast of daily VMT of 149,929,849 resulted. This represents an annual growth rate of 2.05% over the 22-year forecast period, which is felt to be somewhat conservative - but nevertheless very reasonable.

The statewide growth in non-Interstate VMT between 1998 and 2020 was allocated to the counties based on a combination of county population change and the projected increase in VMT per person. Non-Interstate VMT per person per year estimates are shown in Table 2 along with the forecasted value of this parameter for the year 2020. To account for a continued increasing trend in VMT per person, a base level growth of 1.65% per year was applied to each county over 1998 county level estimates. These calculations are shown in Table 3 (Column I). The difference between the resulting statewide total (137,538,035) and the forecasted statewide total discussed above (149,929,849) was then allocated to the county level based on each county's proportion of statewide population change between 1998 and 2020 (See Table 4). This step added VMT above the 1.65% base level growth for counties that are expected to increase in population, and it subtracted VMT from the base level growth for counties that are expected to decrease in population.

Interstate VMT Forecast Details

Table 2 shows Interstate VMT estimates for the years 1980 - 1998. Illustrative historical annual growth rates calculated for selected periods are also shown in this table. This analysis shows that Interstate VMT has increased at an annual rate of 4% or more over this 18-year period and that Interstate VMT has increased at a higher annual rate (by 1% or more) than non-Interstate VMT. In the absence of a more rigorous model, it was decided to use this historical trend, measured in terms of an annual growth rate, as the means to arrive at a year 2020 forecast of Interstate VMT.

It is expected that Interstate travel will continue to increase at a higher rate than non-Interstate travel, but that the rate of increase will likely flatten out somewhat due to various reasons (capacity restraint and the mathematics of compound interest, primary among them). An annual growth rate - starting at 4% per year and decreasing in 0.5% increments over various intervals of time to 2.5% per year - was assumed. The details of this calculation are documented in Table 2. A year 2020 forecast of daily VMT of 65,335,032 resulted. This represents an annual growth rate of 3.36% over the 22-year forecast period, which is felt to be reasonable.

County and Statewide Total VMT Summary

Year 2020 forecasts of total VMT for Kentucky's 120 counties are shown in Table 5. This table also shows an annual VMT growth rate for each county calculated over this 22-year period. This procedure produces an annual growth rate of 2.41% for the state as a whole.

Index

Table 1	This table compares statewide totals for non-Interstate VMT, as originally submitted by HPMS, with revised
	estimates based on the 2001 procedure for estimating local VMT. The comparison is made for the years
	1993-1997 (the only years possible), and concludes that HPMS numbers prior to 1993 do not need to be
	factored (previous versions of this procedure did apply a slight factoring to the 1980-1992 original HPMS
	estimates). Since factoring is no longer needed, this table can be omitted from future versions of this
	procedure. It is presented here primarily for the sake of continuity from previous versions.

- Table 2(a)This table presents the results of a straight-line trend equations based on historical data for the period 1980-
2000 for Interstate VMT (using year as the independent variable) and non-Interstate VMT (using population
as the independent variable). Questionable results are highlighted and noted in the table. This table also
calculates projected growth rates in VMT per capita.
- Chart 1 This chart graphs historical Interstate VMT and shows the results of three alternative forecasting equations (based on the period used for the trend extrapolation). It is concluded that the most proper period to use for trend extrapolation is 1989-1999. As indicated by the historical VMT curve, VMT growth prior to 1989 was flatter than the years since 1989 (which follow a very straight line). Year 2000 was not used for forecasting purposes due to its much lower growth. Additional years of future data will be needed to determine if this year represents a trend shift or if it is an abnormality (as suspected) due to aberrant data or short term travel constraints.

Table 2(b)

- This table is a modification of Table 2(a). For non-Interstate VMT the year 2005 forecast is modified by using a straight-line interpolation between 2000 and the forecasted value for 2010. This was done because it was felt that the equation produced a growth rate for this forecast period that was slightly high. For Interstate VMT the revised statewide totals are based on the 1989-1999 trend, as discussed above. It should be noted, though, that these totals (and the growth rates that result) are used only for cross-checking purposes. The county/corridor growth rates presented in Table 3 control the Interstate VMT forecasting procedure.
- Table 3This table presents assumed annual growth rates for each county containing Interstate mileage for five-year
increment periods from 2000 2020. These growth rates are generally applied on a corridor basis and are
based on an analysis of historical traffic data (not presented here). This table also calculates growth factors
for the forecast periods.
- Table 4This table presents 2000 Census population data for each county and population projections for the years
2005, 2010, 2015, and 2020. The porportion of the state's population change attributable to each county is
calculated for the forecast years.
- Table 5

 These tables (one for each forecast year) calculate the VMT forecasts. For Interstate VMT the growth factors developed in Table 3 are applied. For non-Interstate VMT the forecast is developed in two stages. In Column I an increased VMT based on increasing VMT per capita is calculated. The calculations in Column J add or subtract a proportion of the remaining statewide increase (the difference between the statewide total forecasted in Table 2(b) and the statewide total after accounting for increased VMT per capita) based on the proportion of the statewide population change attributable to each county (from Table 4).
- Table 6This table summarizes the total VMT forecasts for each of the Table 5 forecast years and computes an
annual VMT growth rate for each county. These rates, particularly the extremes, are subjectively evaluated
for reasonableness.

	Original	Original	Original	Revised	
	Daily VMT	Interstate VMT	Non-Int VMT	Non-Int VMT	Ratio
1980	69,131,507	15,589,000	53,542,507		
1981	69,027,397	16,263,000	52,764,397		
1982	70,210,959	15,904,000	54,306,959		
1983	73,202,740	17,287,000	55,915,740		
1984	76,578,082	17,961,000	58,617,082		
1985	78,136,986	17,526,000	60,610,986		
1986	80,142,466	17,830,000	62,312,466		
1987	83,068,493	18,707,000	64,361,493		
1988	86,613,699	20,550,000	66,063,699		
1989	88,123,288	20,945,000	67,178,288		
1990	92,161,644	22,019,000	70,142,644		
1991	96,473,973	23,216,000	73,257,973		
1992	104,279,452	24,989,000	79,290,452		
1993	108,487,671	25,703,000	82,784,671	81,744,541	0.9874
1994	109,101,370	26,395,000	82,706,370	82,539,710	0.9980
1995	112,589,041	27,628,000	84,961,041	84,160,441	0.9906
1996	116,358,904	28,747,000	87,611,904	86,669,117	0.9892
1997	122,914,000	29,928,000	92,986,000	89,100,695	0.9582

Comparison of Statewide Total VMT for Years 1993 - 1997 (Original HPMS vs. Revised Local VMT Procedure)

0.9847

Appendix A - Table 2(a)

Population & VMT Trends and 2020 Projections

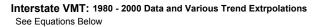
Note

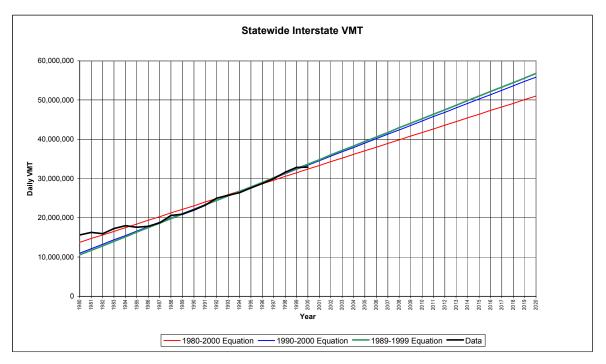
NOLE							
					Non-Interstate	Illustrative Observed & Forecasted Annual Grov	vth Rates
Year	Population	Daily VMT	Interstate VMT	Non-Inter VMT	VMT/person/yr	Interstate VMT	
1980	3,660,334	69,131,507	15,589,000	53,542,507	5,339	1980-2000 Annual Growth Rate =	3.81%
1981	3,670,395	69,027,397	16,263,000	52,764,397	5,247	1990-2000 Annual Growth Rate =	4.10%
1982	3,683,449	70,210,959	15,904,000	54,306,959	5,381	1995-2000 Annual Growth Rate =	3.56%
1983	3,694,469	73,202,740	17,287,000	55,915,740	5,524	1999-2000 Annual Growth Rate =	0.31%
1984	3,695,459	76,578,082	17,961,000	58,617,082	5,790	Projected Annual Growth Rate (2000-2005) =	2.40%
1985	3,694,816	78,136,986	17,526,000	60,610,986	5,988	Projected Annual Growth Rate (2000-2010) =	2.40%
1986	3,687,805	80,142,466	17,830,000	62,312,466	6,167	Projected Annual Growth Rate (2000-2015) =	2.31%
1987	3,683,330	83,068,493	18,707,000	64,361,493	6,378	Projected Annual Growth Rate (2000-2020) =	2.22%
1988	3,680,002	86,613,699	20,550,000	66,063,699	6,553		
1989	3,677,318	88,123,288	20,945,000	67,178,288	6,668	Non-Interstate VMT	
1990	3,686,892	92,161,644	22,019,000	70,142,644	6,944	1980-2000 Annual Growth Rate =	2.93%
1991	3,714,685	96,473,973	23,216,000	73,257,973	7,198	1990-2000 Annual Growth Rate =	3.12%
1992	3,751,866	104,279,452	24,989,000	79,290,452	7,714	1995-2000 Annual Growth Rate =	2.53%
1993	3,792,623	107,447,541 (2)	25,703,000	81,744,541	7,867	1999-2000 Annual Growth Rate =	0.96%
1994	3,823,954	108,934,710	26,395,000	82,539,710	7,878	Projected Annual Growth Rate (2000-2005) =	4.11%
1995	3,856,212	111,788,441	27,628,000	84,160,441	7,966	Projected Annual Growth Rate (1995-2005) =	3.32%
1996	3,882,071	115,416,117	28,747,000	86,669,117	8,149	Projected Annual Growth Rate (2000-2010) =	2.78%
1997	3,908,124	119,028,695	29,928,000	89,100,695	8,322	Projected Annual Growth Rate (2000-2015) =	2.21%
1998	3,936,499	122,899,633	31,566,000	91,333,633	8,469	Projected Annual Growth Rate (2000-2020) =	1.89%
1999	3,960,825	127,267,666	32,807,303	94,460,363	8,705	Non-Inter VMT/person/yr	
2000	4,041,769	128,277,992	32,909,866	95,368,126	8,612	2000-2005 Annual Growth Rate =	3.52%
2005	4,156,300 (1)		37,047,542	116,617,153	10,241	2000-2010 Annual Growth Rate =	2.30%
2010	4,233,231		41,706,719	125,405,210	10,813	2000-2015 Annual Growth Rate =	1.80%
2015	4,293,852		46,365,897	132,330,127	11,249	2000-2020 Annual Growth Rate =	1.51%
2020	4,348,306		51,025,075	138,550,569	11,630		

(1) (2)

Kentucky State Data Center 1999 projections for 2005 - 2020 revised for consistency with 2000 Census VMT estimates for 1993 - 1999 represent slight modification of numbers originally submitted with HPMS.

Modification involves enchanced procedure for estimating VMT on local functional systems. Developed 2001.


Linear Fit Equation Statistics (A) Interstate VMT


(A) Interstate VMT			
931835.5706	6 (1,831,282,777)	VMT= 931,835.57xYear - 1,831,282,777	
36359.13889	72355021.35		
0.9719	1008925.158	R ² = 0.9719	
656.8275961	19		
6.68604E+14	1.93407E+13		
(B) Non-Interstate	VMT		
114.2330	(358,169,359)	VMT = 114.2330xPOP - 358,169,359	

(B) Non-Interstate	VMT
--------------------	-----

VMT = 114.2330xPO	(358,169,359)	114.2330
	42321483.34	11.2190
R ² = 0.8451	5808857.275	0.8451
	19	103.6753
	6.4111E+14	3.4983E+15

Appendix A - Chart 1

			Equation Values				
Year	HPMS Estimates	1980-2000 Trend	1990-2000 Trend	1989-1999 Trend	1980-2000 Trend E	quation	
1980	15,589,000	13,751,652	10,989,032	10,548,744	931,835.57	(1,831,282,777)	VMT= 931,835.57xYear - 1,831,282,777
1981	16,263,000	14,683,488	12,110,419	11,703,985	36359.13889	72355021.35	
1982	15,904,000	15,615,323	13,231,806	12,859,226	0.9719	1008925.158	R ² = 0.9719
1983	17,287,000	16,547,159	14,353,192	14,014,467	656.8275961	19	
1984	17,961,000	17,478,995	15,474,579	15,169,708	6.68604E+14	1.93407E+13	
1985	17,526,000	18,410,830	16,595,966	16,324,949			
1986	17,830,000	19,342,666	17,717,353	17,480,190			
1987	18,707,000	20,274,501	18,838,740	18,635,431	1990-2000 Trend E	quation	
1988	20,550,000	21,206,337	19,960,126	19,790,672	1,121,386.76	(2,209,356,746)	VMT= 1,121,386.76xYear - 2,209,356,746
1989	20,945,000	22,138,172	21,081,513	20,945,913	34823.49691	69472963.62	
1990	22,019,000	23,070,008	22,202,900	22,101,154	0.9914	365231.9169	$R^2 = 0.9914$
1991	23,216,000	24,001,844	23,324,287	23,256,395	1036.969745	9	
1992	24,989,000	24,933,679	24,445,673	24,411,636	1.38326E+14	1.20055E+12	
1993	25,703,000	25,865,515	25,567,060	25,566,877			
1994	26,395,000	26,797,350	26,688,447	26,722,118			
1995	27,628,000	27,729,186	27,809,834	27,877,359	1989-1999 Trend E	quation	
1996	28,747,000	28,661,021	28,931,220	29,032,601	1,155,241.04	(2,276,828,519)	VMT= 1,155,241.04xYear - 2,276,828,519
1997	29,928,000	29,592,857	30,052,607	30,187,842	28844.62656	57516257.69	
1998	31,566,000	30,524,693	31,173,994	31,343,083	0.9944	302524.9956	$R^2 = 0.9944$
1999	32,807,303	31,456,528	32,295,381	32,498,324	1604.040678	9	
2000	32,909,866	32,388,364	33,416,767	33,653,565	1.46804E+14	8.23692E+11	
2001		33,320,199	34,538,154	34,808,806			
2002		34,252,035	35,659,541	35,964,047			
2003		35,183,870	36,780,928	37,119,288			
2004		36,115,706	37,902,314	38,274,529			
2005		37,047,542	39,023,701	39,429,770			
2006		37,979,377	40,145,088	40,585,011			
2007		38,911,213	41,266,475	41,740,252			
2008		39,843,048	42,387,861	42,895,493			
2009		40,774,884	43,509,248	44,050,734			
2010		41,706,719	44,630,635	45,205,975			
2011		42,638,555	45,752,022	46,361,216			
2012		43,570,391	46,873,408	47,516,457			

48,671,698

47,994,795

44,502,226

2013

Appendix A - Table 2(b)

Population & VMT Trends and 2020 Projections

					Non-Interstate	Illustrative Observed & Forecasted Annual Grow	th Rates
Year	Population	Daily VMT	Interstate VMT	Non-Inter VMT	VMT/person/yr	Interstate VMT	
1980	3,660,334	69,131,507	15,589,000	53,542,507	5,339	1980-2000 Annual Growth Rate =	3.81%
1981	3,670,395	69,027,397	16,263,000	52,764,397	5,247	1990-2000 Annual Growth Rate =	4.10%
1982	3,683,449	70,210,959	15,904,000	54,306,959	5,381	1995-2000 Annual Growth Rate =	3.56%
1983	3,694,469	73,202,740	17,287,000	55,915,740	5,524	1999-2000 Annual Growth Rate =	0.31%
1984	3,695,459	76,578,082	17,961,000	58,617,082	5,790	Projected Annual Growth Rate (2000-2005) =	3.68%
1985	3,694,816	78,136,986	17,526,000	60,610,986	5,988	Projected Annual Growth Rate (2000-2010) =	3.23%
1986	3,687,805	80,142,466	17,830,000	62,312,466	6,167	Projected Annual Growth Rate (2000-2015) =	2.96%
1987	3,683,330	83,068,493	18,707,000	64,361,493	6,378	Projected Annual Growth Rate (2000-2020) =	2.76%
1988	3,680,002	86,613,699	20,550,000	66,063,699	6,553		
1989	3,677,318	88,123,288	20,945,000	67,178,288	6,668	Non-Interstate VMT	
1990	3,686,892	92,161,644	22,019,000	70,142,644	6,944	1980-2000 Annual Growth Rate =	2.93%
1991	3,714,685	96,473,973	23,216,000	73,257,973	7,198	1990-2000 Annual Growth Rate =	3.12%
1992	3,751,866	104,279,452	24,989,000	79,290,452	7,714	1995-2000 Annual Growth Rate =	2.53%
1993	3,792,623	107,447,541 (2)	25,703,000	81,744,541	7,867	1999-2000 Annual Growth Rate =	0.96%
1994	3,823,954	108,934,710	26,395,000	82,539,710	7,878	Projected Annual Growth Rate (2000-2005) =	2.97%
1995	3,856,212	111,788,441	27,628,000	84,160,441	7,966	Projected Annual Growth Rate (1995-2005) =	2.75%
1996	3,882,071	115,416,117	28,747,000	86,669,117	8,149	Projected Annual Growth Rate (2000-2010) =	2.78%
1997	3,908,124	119,028,695	29,928,000	89,100,695	8,322	Projected Annual Growth Rate (2000-2015) =	2.21%
1998	3,936,499	122,899,633	31,566,000	91,333,633	8,469	Projected Annual Growth Rate (2000-2020) =	1.89%
1999	3,960,825	127,267,666	32,807,303	94,460,363	8,705	Non-Inter VMT/person/yr	
2000	4,041,769	128,277,992	32,909,866	95,368,126	8,612	2000-2005 Annual Growth Rate =	2.39%
2005	4,156,300		39,429,770	110,386,668	9,694	2000-2010 Annual Growth Rate =	2.30%
2010	4,233,231		45,205,975	125,405,210	10,813	2000-2015 Annual Growth Rate =	1.80%
2015	4,293,852		50,982,180	132,330,127	11,249	2000-2020 Annual Growth Rate =	1.51%
2020	4,348,306 (1)		56,758,386	138,550,569	11,630		

(1) Kentucky State Data Center 1999 projections for 2005 - 2020 revised for consistency with 2000 Census

(2) VMT estimates for 1993 - 1999 represent slight modification of numbers originally submitted with HPMS.

Modification involves enchanced procedure for estimating VMT on local functional systems. Developed 2001.

Linear Fit Equation Statistics (A) Interstate VMT 1155241.0418 (2,276,828,519) VMT = 1,155,241.04xYear - 2,276,828,519 28844.6266 57516257.69 $R^2 = 0.9944$ 0.9944 302524.9956 1604.0407 9 1.46804E+14 8.2369E+11 (B) Non-Interstate VMT 114.2330 (358,169,359) VMT = 114.2330xPOP - 358,169,360

34	42321483.34	11.2190
75	5808857.275	0.8451
19	19	103.6753
14	6.4111E+14	3.4983E+15

 $R^2 = 0.8451$

Interstate Growth Rates

		Annual Growth Rates				Growth Factors					
		2000 to 2005	2005 to 2010		2015 to 2020	2000 to 2005			2000 to 2020		
001	Adair	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
003	Allen	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
005	Anderson	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
007	Ballard	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
009	Barren	2.25	2.25	2.00	1.75	1.1177	1.2492	1.3792	1.5042		
011	Bath	3.50	3.00	2.50	2.00	1.1877	1.3769	1.5578	1.7199		
013	Bell	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
015	Boone	4.50	4.25	4.00	3.50	1.2462	1.5345	1.8669	2.2173		
017	Bourbon	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
019	Boyd	3.50	3.00	2.50	2.00	1.1877	1.3769	1.5578	1.7199		
021 023	Boyle	0	0 0	0 0	0	1.0000	1.0000	1.0000	1.0000		
025	Bracken Breathitt	0	0	0	0	1.0000	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000		
025	Breckinridge	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
029	Bullitt	3.75	3.25	2.75	2.50	1.2021	1.4106	1.6155	1.8278		
031	Butler	0.70	0.20	0	0	1.0000	1.0000	1.0000	1.0000		
033	Caldwell	4.50	4.00	3.50	3.00	1.2462	1.5162	1.8007	2.0875		
035	Calloway	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
037	Campbell	3.00	3.00	2.75	2.50	1.1593	1.3439	1.5392	1.7414		
039	Carlisle	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
041	Carroll	4.00	3.50	3.00	2.50	1.2167	1.4450	1.6752	1.8953		
043	Carter	3.50	3.00	2.50	2.00	1.1877	1.3769	1.5578	1.7199		
045	Casey	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
047	Christian	4.50	4.00	3.50	3.00	1.2462	1.5162	1.8007	2.0875		
049	Clark	3.50	3.00	2.50	2.00	1.1877	1.3769	1.5578	1.7199		
051	Clay	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
053	Clinton Crittenden	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
055 057	Cumberland	0	0	0	0	1.0000	1.0000	1.0000 1.0000	1.0000 1.0000		
057	Daviess	0	0	0	0	1.0000	1.0000 1.0000	1.0000	1.0000		
000	Edmonson	2.25	2.25	2.00	1.75	1.1177	1.2492	1.3792	1.5042		
063	Elliott	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
065	Estill	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
067	Fayette	3.25	3.00	2.75	2.50	1.1734	1.3603	1.5579	1.7626		
069	Fleming	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
071	Floyd	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
073	Franklin	3.50	3.25	3.00	2.50	1.1877	1.3936	1.6156	1.8279		
075	Fulton	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
077	Gallatin	4.00	3.50	3.00	2.50	1.2167	1.4450	1.6752	1.8953		
079	Garrard	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
081	Grant	4.50	4.25	4.00	3.50	1.2462	1.5345	1.8669	2.2173		
083	Graves	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
085	Grayson	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
087	Green	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
089 091	Greenup Hancock	0	0	0	0	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000		
093	Hardin	4.25	4.00	3.50	3.00	1.2313	1.4981	1.7793	2.0627		
095	Harlan	4.25	4.00 0	0.00	0.00	1.0000	1.0000	1.0000	1.0000		
097	Harrison	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
099	Hart	2.25	2.25	2.00	1.75	1.1177	1.2492	1.3792	1.5042		
101	Henderson	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
103	Henry	4.00	3.50	3.00	2.50	1.2167	1.4450	1.6752	1.8953		
105	Hickman	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
107	Hopkins	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
109	Jackson	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
111	Jefferson	3.25	3.00	2.75	2.50	1.1734	1.3603	1.5579	1.7626		
113	Jessamine	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
115	Johnson	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
117	Kenton	3.25	3.00	2.75	2.50	1.1734	1.3603	1.5579	1.7626		
119	Knott	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
121	Knox	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
123	Larue	2.25	2.25 3.00	2.00 2.50	1.75 2.00	1.1177	1.2492	1.3792 1.5578	1.5042		
125 127	Laurel Lawrence	3.50 0	3.00 0	2.50	2.00	1.1877 1.0000	1.3769 1.0000	1.5578	1.7199 1.0000		
127		0	0	0	0	1.0000	1.0000	1.0000	1.0000		
129	Lee Leslie	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
133	Letcher	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
135	Lewis	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
		•	Ŭ		Ŭ						

			Annual Gr	owth Rates		Growth Factors					
		2000 to 2005	2005 to 2010	2010 to 2015	2015 to 2020	2000 to 2005	2000 to 2010	2000 to 2015	2000 to 2020		
137	Lincoln	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
139	Livingston	4.50	4.00	3.50	3.00	1.2462	1.5162	1.8007	2.0875		
141	Logan	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
143	Lyon	4.50	4.00	3.50	3.00	1.2462	1.5162	1.8007	2.0875		
145	McCracken	4.50	4.00	3.50	3.00	1.2462	1.5162	1.8007	2.0875		
147	McCreary	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
149	McLean	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
151	Madison	3.50	3.00	2.50	2.00	1.1877	1.3769	1.5578	1.7199		
153	Magoffin	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
155	Marion	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
157	Marshall	4.50	4.00	3.50	3.00	1.2462	1.5162	1.8007	2.0875		
159	Martin	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
161	Mason	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
163	Meade	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
165	Menifee	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
167	Mercer	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
169	Metcalfe	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
171	Monroe	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
173	Montgomery	3.50	3.00	2.50	2.00	1.1877	1.3769	1.5578	1.7199		
175	Morgan	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
177	Muhlenberg	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
179	Nelson	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
181	Nicholas	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
183	Ohio	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
185	Oldham	4.00	3.50	3.00	2.50	1.2167	1.4450	1.6752	1.8953		
187	Owen	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
189	Owsley	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
191	Pendleton	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
193	Perry	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
195	Pike	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
197	Powell	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
199	Pulaski	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
201	Robertson	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
203	Rockcastle	3.50	3.00	2.50	2.00	1.1877	1.3769	1.5578	1.7199		
205	Rowan	3.50	3.00	2.50	2.00	1.1877	1.3769	1.5578	1.7199		
207	Russell	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
209	Scott	5.00	4.75	4.50	4.00	1.2763	1.6096	2.0058	2.4404		
211	Shelby	3.50	3.25	3.00	2.50	1.1877	1.3936	1.6156	1.8279		
213	Simpson	2.25	2.25		1.75	1.1177	1.2492	1.3792	1.5042		
215	Spencer	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
217	Taylor	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
219	Todd	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
221	Trigg	4.50	4.00	3.50	3.00	1.2462	1.5162	1.8007	2.0875		
223	Trimble	4.00	3.50	3.00	2.50	1.2167	1.4450	1.6752	1.8953		
225	Union	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
227	Warren	2.25	2.25	2.00	1.75	1.1177	1.2492	1.3792	1.5042		
229	Washington	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
231	Wayne	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
233	Webster	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
235	Whitley	3.50	3.00	2.50	2.00	1.1877	1.3769	1.5578	1.7199		
237	Wolfe	0	0	0	0	1.0000	1.0000	1.0000	1.0000		
239	Woodford	3.50	3.25	3.00	2.50	1.1877	1.3936	1.6156	1.8279		

Population Change: 2000 - 2020

				% of State			% of State			% of State			% of State
Kaatualuu	2000	2005	2005-2000	Increase	2010	2010-2000	Increase	2015	2015-2000	Increase	2020	2020-2000	Increase
Kentucky 1 Adair	4,041,769 17,244	4,156,300 17,840	114,531 596	0.52%	4,233,231 18,153	191,462 909	0.47%	4,293,852 18,383	252,083 1,139	0.45%	4,348,306 18,630	306,537 1,386	0.45%
2 Allen	17,800	18,977	1,177	1.03%	19,636	1,836	0.96%	20,215	2,415	0.96%	20,894	3,094	1.01%
3 Anderson	19,111	21,078	1,967	1.72%	22,384	3,273	1.71%	23,605	4,494	1.78%	25,010	5,899	1.92%
4 Ballard 5 Barren	8,286 38,033	8,612 39,915	326 1,882	0.28% 1.64%	8,713 40,940	427 2,907	0.22% 1.52%	8,779 41,758	493 3,725	0.20% 1.48%	8,896 42,682	610 4,649	0.20% 1.52%
6 Bath	11,085	11,306	221	0.19%	11,415	330	0.17%	11,487	402	0.16%	42,002	456	0.15%
7 Bell	30,060	29,299	-761	-0.66%	28,929	-1,131	-0.59%	28,513	-1,547	-0.61%	27,850	-2,210	-0.72%
8 Boone	85,991	99,686	13,695	11.96%	109,392	23,401	12.22%	118,647	32,656	12.95%	129,784	43,793	14.29%
9 Bourbon 10 Boyd	19,360 49,752	19,310 48,648	-50 -1,104	-0.04% -0.96%	19,266 47,765	-94 1,987-	-0.05% -1.04%	19,173 46,749	-187 -3,003	-0.07% -1.19%	18,973 45,421	-387 -4,331	-0.13% -1.41%
11 Boyle	27,697	28,237	540	0.47%	28,516	819	0.43%	28,698	1,001	0.40%	28,830	1,133	0.37%
12 Bracken	8,279	8,410	131	0.11%	8,475	196	0.10%	8,508	229	0.09%	8,520	241	0.08%
13 Breathitt 14 Breckinridge	16,100 18,648	16,524 19,405	424 757	0.37% 0.66%	16,835 19,815	735 1,167	0.38% 0.61%	17,095 20,156	995 1,508	0.39% 0.60%	17,306 20,542	1,206 1,894	0.39% 0.62%
15 Bullitt	61,236	66,838	5,602	4.89%	70,779	9,543	4.98%	74,197	12,961	5.14%	77,658	16,422	5.36%
16 Butler	13,010	13,358	348	0.30%	13,565	555	0.29%	13,730	720	0.29%	13,898	888	0.29%
17 Caldwell 18 Calloway	13,060 34,177	13,303 34,113	243 -64	0.21% -0.06%	13,344 33,769	284 -408	0.15% -0.21%	13,361 33,312	301 -865	0.12% -0.34%	13,411 32,798	351 -1,379	0.11% -0.45%
19 Campbell	88,616	90,207	-04 1,591	1.39%	91,316	2,700	-0.21%	92,078	3,462	1.37%	92,549	3,933	1.28%
20 Carlisle	5,351	5,380	29	0.03%	5,331	-20	-0.01%	5,271	-80	-0.03%	5,197	-154	-0.05%
21 Carroll	10,155	10,242	87	0.08%	10,299	144	0.08%	10,343	188	0.07%	10,353	198	0.06%
22 Carter 23 Casey	26,889 15,447	28,077 15,409	1,188 -38	1.04% -0.03%	28,821 15,394	1,932 -53	1.01% -0.03%	29,399 15,368	2,510 -79	1.00% -0.03%	29,938 15,273	3,049 -174	0.99% -0.06%
24 Christian	72,265	75,539	3,274	2.86%	78,025	5,760	3.01%	80,315	8,050	3.19%	82,467	10,202	3.33%
25 Clark	33,144	34,417	1,273	1.11%	35,243	2,099	1.10%	35,892	2,748	1.09%	36,468	3,324	1.08%
26 Clay 27 Clinton	24,556 9,634	24,599 9,677	43 43	0.04% 0.04%	24,896 9,667	340 33	0.18% 0.02%	25,163 9,635	607 1	0.24% 0.00%	25,256 9,566	700 -68	0.23% -0.02%
28 Crittenden	9,034 9,384	9,077 9,344	-40	-0.03%	9,007	-154	-0.02%	9,035	-277	-0.11%	9,500 8,983	-00	-0.02%
29 Cumberland	7,147	7,143	-4	0.00%	7,085	-62	-0.03%	7,009	-138	-0.05%	6,929	-218	-0.07%
30 Daviess	91,545	93,074	1,529	1.34%	94,166	2,621	1.37%	94,894	3,349	1.33%	95,229	3,684	1.20%
31 Edmonson 32 Elliott	11,644 6,748	12,433 6,683	789 -65	0.69% -0.06%	12,866 6,658	1,222 -90	0.64% -0.05%	13,197 6,646	1,553 -102	0.62% -0.04%	13,544 6,604	1,900 -144	0.62% -0.05%
33 Estill	15,307	15,365	58	0.05%	15,362	55	0.03%	15,324	17	0.01%	15,210	-97	-0.03%
34 Fayette	260,512	264,013	3,501	3.06%	266,560	6,048	3.16%	267,987	7,475	2.97%	268,230	7,718	2.52%
35 Fleming 36 Floyd	13,792 42,441	14,250 42,090	458 -351	0.40% -0.31%	14,455 42,097	663 -344	0.35% -0.18%	14,628 42,067	836 -374	0.33% -0.15%	14,815 41,728	1,023 -713	0.33% -0.23%
37 Franklin	47,687	48,382	695	0.61%	48,676	989	0.52%	48,657	970	0.38%	48,410	723	0.24%
38 Fulton	7,752	7,655	-97	-0.08%	7,581	-171	-0.09%	7,494	-258	-0.10%	7,405	-347	-0.11%
39 Gallatin 40 Garrard	7,870 14,792	9,019 16,242	1,149	1.00% 1.27%	9,822 17,033	1,952 2,241	1.02% 1.17%	10,644	2,774	1.10%	11,669	3,799 3,714	1.24% 1.21%
40 Ganald 41 Grant	22,384	25,419	1,450 3,035	2.65%	27,587	5,203	2.72%	17,695 29,686	2,903 7,302	1.15% 2.90%	18,506 32,166	9,782	3.19%
42 Graves	37,028	37,994	966	0.84%	38,487	1,459	0.76%	38,908	1,880	0.75%	39,448	2,420	0.79%
43 Grayson	24,053	25,169	1,116	0.97%	25,865	1,812	0.95%	26,464	2,411	0.96%	27,043	2,990	0.98%
44 Green 45 Greenup	11,518 36,891	11,592 36,815	74 -76	0.06% -0.07%	11,554 36,627	36 -264	0.02% -0.14%	11,475 36,269	-43 -622	-0.02% -0.25%	11,392 35,661	-126 -1,230	-0.04% -0.40%
46 Hancock	8,392	9,303	911	0.80%	9,914	1,522	0.79%	10,487	2,095	0.83%	11,142	2,750	0.90%
47 Hardin	94,174	94,484	310	0.27%	95,680	1,506	0.79%	96,719	2,545	1.01%	97,066	2,892	0.94%
48 Harlan 49 Harrison	33,202 17,983	32,609 18,534	-593 551	-0.52% 0.48%	32,423 18,813	-779 830	-0.41% 0.43%	32,207 19,047	-995 1,064	-0.39% 0.42%	31,702 19,333	-1,500 1,350	-0.49% 0.44%
50 Hart	17,445	18,346	901	0.40%	18,871	1,426	0.74%	19,292	1,847	0.73%	19,335	2,291	0.75%
51 Henderson	44,829	45,032	203	0.18%	45,059	230	0.12%	44,949	120	0.05%	44,649	-180	-0.06%
52 Henry	15,060	16,146	1,086	0.95%	16,807	1,747	0.91%	17,377	2,317	0.92%	17,999	2,939	0.96%
53 Hickman 54 Hopkins	5,262 46,519	4,904 46,365	-358 -154	-0.31% -0.13%	4,646 46,223	-616 -296	-0.32% -0.15%	4,418 46,018	-844 -501	-0.33% -0.20%	4,190 45,656	-1,072 -863	-0.35% -0.28%
55 Jackson	13,495	14,014	519	0.45%	14,352	857	0.45%	14,642	1,147	0.46%	14,925	1,430	0.47%
56 Jefferson	693,604	692,873	-731	-0.64%	693,303	-301	-0.16%	690,635	-2,969	-1.18%	683,742	-9,862	-3.22%
57 Jessamine 58 Johnson	39,041 23,445	42,210 23,596	3,169 151	2.77% 0.13%	44,436 23,712	5,395 267	2.82% 0.14%	46,411 23,749	7,370 304	2.92% 0.12%	48,511 23,667	9,470 222	3.09% 0.07%
59 Kenton	151,464	153,242	1,778	1.55%	155,260	3,796	1.98%	156,716	5,252	2.08%	157,455	5,991	1.95%
60 Knott	17,649	17,569	-80	-0.07%	17,611	-38	-0.02%	17,636	-13	-0.01%	17,537	-112	-0.04%
61 Knox	31,795	32,860	1,065	0.93%	33,633	1,838	0.96%	34,306	2,511	1.00%	34,933	3,138	1.02%
62 Larue 63 Laurel	13,373 52,715	13,992 56,741	619 4,026	0.54% 3.52%	14,329 59,633	956 6,918	0.50% 3.61%	14,589 62,266	1,216 9,551	0.48% 3.79%	14,878 65,045	1,505 12,330	0.49% 4.02%
64 Lawrence	15,569	16,308	739	0.65%	16,761	1,192	0.62%	17,131	1,562	0.62%	17,504	1,935	0.63%
65 Lee	7,916	8,049	133	0.12%	8,099	183	0.10%	8,136	220	0.09%	8,140	224	0.07%
66 Leslie 67 Letcher	12,401 25.277	12,244	-157 -138	-0.14% -0.12%	12,191 25,082	-210 -195	-0.11% -0.10%	12,110	-291 -322	-0.12% -0.13%	11,903	-498 -648	-0.16% -0.21%
67 Letcher 68 Lewis	25,277 14,092	25,139 14,532	-138 440	-0.12% 0.38%	25,082 14,860	768	-0.10%	24,955 15,157	-322 1,065	-0.13%	24,629 15,422	-648 1,330	-0.21%
69 Lincoln	23,361	24,615	1,254	1.09%	25,389	2,028	1.06%	26,016	2,655	1.05%	26,645	3,284	1.07%

				% of State			% of State			% of State			% of State
	2000	2005	2005-2000	Increase	2010	2010-2000	Increase	2015	2015-2000	Increase	2020	2020-2000	Increase
70 Livingston	9,804	9,937	133	0.12%	9,898	94	0.05%	9,808	4	0.00%	9,698	-106	-0.03%
71 Logan	26,573	27,509	936	0.82%	28,050	1,477	0.77%	28,516	1,943	0.77%	28,989	2,416	0.79%
72 Lyon	8,080	8,456	376	0.33%	8,542	462	0.24%	8,551	471	0.19%	8,576	496	0.16%
73 McCracken	65,514	65,687	173	0.15%	65,653	139	0.07%	65,452	-62	-0.02%	65,105	-409	-0.13%
74 McCreary	17,080	17,650	570	0.50%	18,084	1,004	0.52%	18,456	1,376	0.55%	18,750	1,670	0.54%
75 McLean	9,938	10,000	62	0.05%	9,946	8	0.00%	9,862	-76	-0.03%	9,765	-173	-0.06%
76 Madison	70,872	75,161	4,289	3.74%	77,871	6,999	3.66%	80,045	9,173	3.64%	82,268	11,396	3.72%
77 Magoffin	13,332	13,746	414	0.36%	14,086	754	0.39%	14,391	1,059	0.42%	14,633	1,301	0.42%
78 Marion	18,212	18,529	317	0.28%	18,778	566	0.30%	19,008	796	0.32%	19,209	997	0.33%
79 Marshall	30,125	31,227	1,102	0.96%	31,567	1,442	0.75%	31,696	1,571	0.62%	31,863	1,738	0.57%
80 Martin	12,578	12,077	-501	-0.44%	11,917	-661	-0.35%	11,754	-824	-0.33%	11,432	-1,146	-0.37%
81 Mason	16,800	16,550	-250	-0.22%	16,359	-441	-0.23%	16,124	-676	-0.27%	15,823	-977	-0.32%
82 Meade	26,349	30,364	4,015	3.51%	33,076	6,727	3.51%	35,593	9,244	3.67%	38,633	12,284	4.01%
83 Menifee	6,556	6,931	375	0.33%	7,130	574	0.30%	7,291	735	0.29%	7,464	908	0.30%
84 Mercer	20,817	21,627	810	0.71%	22,084	1,267	0.66%	22,443	1,626	0.65%	22,794	1,977	0.64%
85 Metcalfe	10,037	10,336	299	0.26%	10,488	451	0.24%	10,599	562	0.22%	10,689	652	0.21%
86 Monroe	11,756	11,396	-360	-0.31%	11,152	-604	-0.32%	10,898	-858	-0.34%	10,575	-1,181	-0.39%
87 Montgomery	22,554	23,436	882	0.77%	24,000	1,446	0.76%	24,479	1,925	0.76%	24,938	2,384	0.78%
88 Morgan	13,948	14,204	256	0.22%	14,350	402	0.21%	14,467	519	0.21%	14,567	619	0.20%
89 Muhlenberg	31,839	32,622	783	0.68%	33,050	1,211	0.63%	33,413	1,574	0.62%	33,764	1,925	0.63%
90 Nelson	37,477	41,228	3,751	3.28%	43,876	6,399	3.34%	46,381	8,904	3.53%	49,235	11,758	3.84%
91 Nicholas	6,813	6,949	136	0.12%	7,016	203	0.11%	7,060	247	0.10%	7,092	279	0.09%
92 Ohio	22,916	23,479	563	0.49%	23,759	843	0.44%	24,001	1,085	0.43%	24,241	1,325	0.43%
93 Oldham 94 Owen	46,178 10,547	49,769	3,591 595	3.14% 0.52%	51,981 11,454	5,803 907	3.03% 0.47%	54,089	7,911	3.14% 0.46%	56,921 12,010	10,743	3.50%
95 Owsley	4,858	11,142 4,957	595 99	0.52%	5,014	907 156	0.47%	11,714 5,047	1,167 189	0.46%	5,074	1,463 216	0.48% 0.07%
96 Pendleton	4,858	4,957	1,068	0.93%	16,158	1,768	0.08%	16,789	2,399	0.95%	17,468	3,078	1.00%
97 Perry	29,390	29,660	270	0.93%	30,039	649	0.92 %	30,319	2,399	0.37%	30,357	3,078 967	0.32%
98 Pike	68.736	68,453	-283	-0.25%	68.529	-207	-0.11%	68.282	-454	-0.18%	67.365	-1.371	-0.45%
99 Powell	13,237	13,938	-203	0.61%	14,434	1,197	0.63%	14,896	1,659	0.66%	15,335	2,098	0.68%
100 Pulaski	56,217	59,779	3,562	3.11%	61,703	5,486	2.87%	63,152	6,935	2.75%	64,620	8,403	2.74%
101 Robertson	2,266	2,243	-23	-0.02%	2,213	-53	-0.03%	2,176	-90	-0.04%	2,136	-130	-0.04%
102 Rockcastle	16,582	17,084	502	0.44%	17,346	764	0.40%	17,531	949	0.38%	17,686	1,104	0.36%
102 Rowan	22,094	23,015	921	0.80%	23,535	1.441	0.75%	23,927	1,833	0.73%	24,231	2,137	0.70%
104 Russell	16,315	16,991	676	0.59%	17,323	1,008	0.53%	17,525	1,210	0.48%	17,709	1,394	0.45%
105 Scott	33,061	37,413	4,352	3.80%	40,346	7,285	3.80%	43,131	10,070	3.99%	46,541	13,480	4.40%
106 Shelby	33,337	36,032	2,695	2.35%	37,682	4,345	2.27%	39,109	5,772	2.29%	40,731	7,394	2.41%
107 Simpson	16,405	16,939	534	0.47%	17,259	854	0.45%	17,508	1,103	0.44%	17,746	1,341	0.44%
108 Spencer	11,766	14,178	2,412	2.11%	15,910	4,144	2.16%	17,681	5,915	2.35%	19,972	8,206	2.68%
109 Taylor	22,927	23,515	588	0.51%	23,773	846	0.44%	23,943	1,016	0.40%	24,092	1,165	0.38%
110 Todd	11,971	12,007	36	0.03%	12,001	30	0.02%	11,989	18	0.01%	11,953	-18	-0.01%
111 Trigg	12,597	13,896	1,299	1.13%	14,566	1,969	1.03%	15,115	2,518	1.00%	15,783	3,186	1.04%
112 Trimble	8,125	8,646	521	0.45%	8,979	854	0.45%	9,271	1,146	0.45%	9,605	1,480	0.48%
113 Union	15,637	16,103	466	0.41%	16,713	1,076	0.56%	17,373	1,736	0.69%	18,041	2,404	0.78%
114 Warren	92,522	96,623	4,101	3.58%	99,247	6,725	3.51%	101,333	8,811	3.50%	103,254	10,732	3.50%
115 Washington	10,916	11,191	275	0.24%	11,321	405	0.21%	11,439	523	0.21%	11,587	671	0.22%
116 Wayne	19,923	20,632	709	0.62%	21,058	1,135	0.59%	21,397	1,474	0.58%	21,689	1,766	0.58%
117 Webster	14,120	13,941	-179	-0.16%	13,801	-319	-0.17%	13,668	-452	-0.18%	13,494	-626	-0.20%
118 Whitley	35,865	36,733	868	0.76%	37,351	1,486	0.78%	37,879	2,014	0.80%	38,297	2,432	0.79%
119 Wolfe	7,065	7,432	367	0.32%	7,711	646	0.34%	7,971	906	0.36%	8,225	1,160	0.38%
120 Woodford	23,208	24,634	1,426	1.25%	25,571	2,363	1.23%	26,360	3,152	1.25%	27,189	3,981	1.30%
	4,041,769	4,156,300	114,531	100.00%	4,233,231	191,462	100.00%	4,293,852	252,083	100.00%	4,348,306	306,537	100.00%

2005 VMT Forecasts

		2000 Total DVMT	2000 Interstate DVMT	2000 Non-Inter. DVMT	2005 Interstate DVMT	2000 Non-Inter. +2.39%/yr.	2005 Non-Inter. DVMT	2005 Total DVMT
001	Adair	499,690	0	499,690	0	562,326	578,271	578,271
003	Allen	429,261	0	429,261	0	483,069	514,558	514,558
005	Anderson	574,215	0	574,215	0	646,193	698,817	698,817
007	Ballard	272,170	0	272,170	0	306,286	315,008	315,008
009	Barren	1,332,171	260,874	1,071,297	291,573	1,205,584	1,255,935	1,547,508
011	Bath	485,692	248,370	237,322	294,985	267,071	272,983	567,968
013	Bell Boone	889,500	0	889,500	0	1,000,999	980,639	980,639
015 017	Bourbon	3,714,615 576,998	2,082,005 0	1,632,610 576,998	2,594,557 0	1,837,258 649,325	2,203,650 647,987	4,798,207 647,987
017	Boyd	1,348,719	189,505	1,159,215	225,072	1,304,522	1,274,986	1,500,059
013	Boyle	716,728	0	716,728	0	806,570	821,017	821,017
023	Bracken	294,198	0	294,198	0	331,075	334,580	334,580
025	Breathitt	431,986	0	431,986	0	486,135	497,479	497,479
027	Breckinridge	443,317	0	443,317	0	498,887	519,140	519,140
029	Bullitt	2,077,887	1,214,990	862,897	1,460,540	971,061	1,120,935	2,581,474
031	Butler	480,073	0	480,073	0	540,250	549,561	549,561
033	Caldwell	521,369	37,910	483,460	47,242	544,062	550,563	597,805
035	Calloway	817,228	0	817,228	0	919,668	917,956	917,956
037	Campbell	2,143,995	824,757	1,319,237	956,120	1,484,604	1,527,169	2,483,289
039 041	Carlisle Carroll	159,375 624,249	0 370,203	159,375 254,046	0 450,408	179,352 285,891	180,128 288,218	180,128 738,626
041	Carter	1,093,167	474,248	234,040 618,920	563,258	696,501	728,285	1,291,542
045	Casey	394,825	0	394,825	000,200	444,317	443,300	443,300
047	Christian	2,302,526	466,406	1,836,121	581,226	2,066,279	2,153,870	2,735,097
049	Clark	1,229,322	460,383	768,938	546,791	865,325	899,382	1,446,173
051	Clay	701,215	0	701,215	0	789,112	790,263	790,263
053	Clinton	272,191	0	272,191	0	306,310	307,461	307,461
055	Crittenden	236,572	0	236,572	0	266,227	265,157	265,157
057	Cumberland	219,322	0	219,322	0	246,815	246,708	246,708
059	Daviess	2,110,068	0	2,110,068	0	2,374,565	2,415,471	2,415,471
061	Edmonson	332,216	78,314	253,901	87,530	285,728	306,837	394,367
063	Elliott	140,399	0 0	140,399	0	157,998	156,259	156,259
065 067	Estill Fayette	337,380 7,342,753	1,792,108	337,380 5,550,644	2,102,880	379,671 6,246,419	381,223 6,340,084	381,223 8,442,964
069	Fleming	357,213	1,792,100	357,213	2,102,880	401,990	414,243	414,243
071	Floyd	1,493,891	0	1,493,891	0	1,681,150	1,671,760	1,671,760
073	Franklin	1,504,839	444,473	1,060,366	527,895	1,193,283	1,211,877	1,739,772
075	Fulton	206,673	0	206,673	0	232,580	229,985	229,985
077	Gallatin	620,913	445,524	175,389	542,048	197,374	228,114	770,162
079	Garrard	360,746	0	360,746	0	405,966	444,759	444,759
081	Grant	1,262,752	902,674	360,078	1,124,896	405,213	486,411	1,611,307
083	Graves	1,207,177	0	1,207,177	0	1,358,497	1,384,342	1,384,342
085	Grayson	880,393	0	880,393	0	990,751	1,020,608	1,020,608
087	Green	270,461	0	270,461	0	304,364	306,343	306,343
089 091	Greenup Hancock	908,623 282,667	0 0	908,623 282,667	0	1,022,519 318,099	1,020,486 342,471	1,020,486 342,471
093	Hardin	3,673,512	1,052,169	2,621,343	1,295,584	2,949,930	2,958,223	4,253,807
095	Harlan	843,751	0	843,751	0	949,516	933,651	933,651
097	Harrison	381,630	0	381,630	0	429,468	444,209	444,209
099	Hart	1,060,312	675,089	385,224	754,532	433,511	457,617	1,212,148
101	Henderson	1,603,327	0	1,603,327	0	1,804,305	1,809,736	1,809,736
103	Henry	690,546	372,301	318,245	452,961	358,137	387,192	840,153
105	Hickman	197,484	0	197,484	0	222,239	212,661	212,661
107	Hopkins	1,747,339	0	1,747,339	0	1,966,368	1,962,248	1,962,248
109	Jackson	313,765	0	313,765	0	353,096	366,981	366,981
111	Jefferson	19,084,449	7,955,972	11,128,476	9,335,628	12,523,434	12,503,877	21,839,505
113 115	Jessamine Johnson	939,376 668,852	0 0	939,376 668,852	0 0	1,057,127 752,693	1,141,909 756,733	1,141,909 756,733
117	Kenton	3,919,090	2,129,239	1,789,850	2,498,474	2,014,209	2,061,777	4,560,251
119	Knott	504,967	2,129,239	504,967	2,490,474	568,265	566,125	566,125
121	Knox	891,148	0	891,148	0	1,002,854	1,031,346	1,031,346
123	Larue	503,382	135,630	367,752	151,590	413,850	430,410	582,000
125	Laurel	1,996,640	808,146	1,188,494	959,824	1,337,472	1,445,182	2,405,006
127	Lawrence	604,878	0	604,878	0	680,699	700,470	700,470
129	Lee	197,355	0	197,355	0	222,094	225,652	225,652
131	Leslie	404,219	0	404,219	0	454,887	450,687	450,687
133	Letcher	711,210	0	711,210	0	800,361	796,669	796,669
135	Lewis	435,920	0	435,920	0	490,562	502,334	502,334

		2000 Total DVMT	2000 Interstate DVMT	2000 Non-Inter. DVMT	2005 Interstate DVMT	2000 Non-Inter. +2.39%/yr.	2005 Non-Inter. DVMT	2005 Total DVMT
137	Lincoln	710,692	0	710,692	0	799,777	833,326	833,326
139	Livingston	389,452	111,588	277,864	139,059	312,694	316,252	455,312
141	Logan	860,098	0	860,098	0	967,912	992,953	992,953
143	Lyon	676,173	378,142	298,030	471,234	335,388	345,448	816,682
145	McCracken	2,133,941	562,163	1,571,777	700,558	1,768,800	1,773,428	2,473,986
147	McCreary	472,284	0	472,284	0	531,485	546,734	546,734
149	McLean	307,586	0	307,586	0	346,142	347,801	347,801
151	Madison	2,422,949	1,095,608	1,327,341	1,301,238	1,493,724	1,608,470	2,909,709
153	Magoffin	421,918	0	421,918	0	474,806	485,882	485,882
155	Marion	430,566	0	430,566	0	484,537	493,018	493,018
157	Marshall	1,259,674	317,265	942,409	395,370	1,060,540	1,090,023	1,485,393
159	Martin	340,828	0	340,828	0	383,551	370,147	370,147
161	Mason	678,811	0	678,811	0	763,900	757,211	757,211
163	Meade	663,413	0	663,413	0	746,572	853,988	853,988
165	Menifee	143,467	0	143,467	0	161,450	171,483	171,483
167	Mercer	618,651	0	618,651	0	696,200	717,870	717,870
169 171	Metcalfe	340,816	0 0	340,816	0 0	383,538	391,537	391,537 301,892
173	Monroe Montgomery	276,823 713,101	228,347	276,823 484,754	271,205	311,523 545,518	301,892 569,115	840,320
175	Mongan	358,763	220,347	358,763	271,205	403,735	410,583	410,583
177	Muhlenberg	1,038,484	0	1,038,484	0	1,168,658	1,189,606	1,189,606
179	Nelson	1,192,457	0 0	1,192,457	0	1,341,932	1,442,285	1,442,285
181	Nicholas	171,513	0	171,513	0	193,012	196,651	196,651
183	Ohio	930,782	0	930,782	0	1,047,456	1,062,518	1,062,518
185	Oldham	1,278,095	616,475	661,620	750,036	744,554	840,626	1,590,662
187	Owen	231,732	0	231,732	0	260,780	276,699	276,699
189	Owsley	124,675	0	124,675	0	140,303	142,952	142,952
191	Pendleton	338,493	0	338,493	0	380,924	409,497	409,497
193	Perry	958,955	0	958,955	0	1,079,160	1,086,384	1,086,384
195	Pike	2,177,247	0	2,177,247	0	2,450,165	2,442,594	2,442,594
197	Powell	497,464	0	497,464	0	559,821	578,575	578,575
199	Pulaski	1,723,396	0	1,723,396	0	1,939,424	2,034,720	2,034,720
201	Robertson	44,126	0	44,126	0	49,658	49,042	49,042
203	Rockcastle	1,204,077	804,632	399,445	955,651	449,515	462,946	1,418,596
205 207	Rowan Russell	830,467 514,862	278,974 0	551,493 514,862	331,333 0	620,623 579,400	645,263 597,486	976,597 597,486
207	Scott	1,991,532	1,268,943	722,589	1,619,529	813,165	929,597	2,549,126
209	Shelby	1,533,323	856,296	677,028	1,017,011	761,893	833,994	1,851,005
213	Simpson	896,853	495,968	400,886	554,332	451,137	465,423	1,019,755
215	Spencer	300,410	0	300,410	0	338,066	402,596	402,596
217	Taylor	587,402	0	587,402	0	661,033	676,765	676,765
219	Todd	330,629	0	330,629	0	372,073	373,036	373,036
221	Trigg	536,766	182,482	354,284	227,406	398,694	433,447	660,853
223	Trimble	209,771	19,350	190,421	23,542	214,291	228,229	251,771
225	Union	428,872	0	428,872	0	482,631	495,099	495,099
227	Warren	3,352,540	1,187,538	2,165,002	1,327,284	2,436,386	2,546,102	3,873,387
229	Washington	348,934	0	348,934	0	392,673	400,031	400,031
231	Wayne	474,610	0	474,610	0	534,103	553,071	553,071
233	Webster	559,244	0	559,244	0	629,345	624,556	624,556
235	Whitley	1,638,010	864,748	773,262	1,027,049	870,190	893,412	1,920,462
237	Wolfe	319,037	0	319,037	0	359,028	368,846	368,846
239	Woodford	1,018,333	220,058	798,275	261,359	898,339	936,490	1,197,850
	Totals	128,277,992	32,909,866	95,368,126	39,218,812	107,322,545	110,386,668	149,605,480
			Annual (Growth Rates	3.57%		2.97%	

VMT Annual Growth Rates: 2000 - 2020

		2000 Total DVMT	2005 Total DVMT	2000-2005 Annual Growth %	2010 Total DVMT	2000-2010 Annual Growth %	2015 Total DVMT	2000-2015 Annual Growth %	2020 Total DVMT	2000-2020 Annual Growth %
001	Adair	499,690	578,271	2.46%	654,274	2.48%	687,801	2.02%	718,874	1.75%
003	Allen	429,261	514,558	3.07%	593,399	2.99%	634,744	2.47%	678,715	2.21%
005	Anderson	574,215	698,817	3.33%	818,047	3.27%	887,684	2.76%	964,467	2.50%
007	Ballard	272,170	315,008	2.47%	354,345	2.43%	370,738	1.95%	386,898	1.69%
009	Barren	1,332,171	1,547,508	2.53%	1,757,060	2.55%	1,873,593	2.15%	1,987,525	1.92%
011	Bath	485,692	567,968	2.64%	649,688	2.68%	709,325	2.40%	762,098	2.17%
013	Bell	889,500	980,639	1.64%	1,083,017	1.81%	1,115,159	1.42%	1,129,375	1.14%
015	Boone	3,714,615	4,798,207	4.36%	5,939,358	4.36%	7,018,104	4.06%	8,226,953	3.86%
017 019	Bourbon Boyd	576,998 1,348,719	647,987 1,500,059	1.95% 1.79%	721,528 1,657,090	2.05% 1.89%	748,321 1,718,357	1.64% 1.53%	766,230 1,751,135	1.36% 1.25%
013	Boyle	716,728	821,017	2.29%	924,055	2.34%	967,216	1.89%	1,003,641	1.62%
023	Bracken	294,198	334,580	2.17%	375,136	2.23%	391,460	1.80%	404,767	1.53%
025	Breathitt	431,986	497,479	2.38%	564,115	2.46%	594,925	2.02%	621,723	1.75%
027	Breckinridge	443,317	519,140	2.67%	591,172	2.65%	625,405	2.17%	659,123	1.91%
029	Bullitt	2,077,887	2,581,474	3.68%	3,080,494	3.64%	3,486,384	3.29%	3,912,901	3.06%
031	Butler	480,073	549,561	2.28%	619,134	2.34%	649,366	1.91%	676,399	1.65%
033	Caldwell	521,369	597,805	2.31%	672,813	2.35%	709,257	1.94%	742,851	1.70%
035	Calloway	817,228	917,956	1.96%	1,013,768	1.98%	1,041,548	1.53%	1,058,547	1.24%
037	Campbell	2,143,995	2,483,289	2.48%	2,844,678	2.60%	3,099,197	2.33%	3,342,948	2.14%
039 041	Carlisle Carroll	159,375 624,249	180,128 738,626	2.06% 2.84%	199,473 858,131	2.06% 2.94%	205,830 957,882	1.61% 2.71%	210,129 1,050,839	1.33% 2.51%
043	Carter	1,093,167	1,291,542	2.82%	1,487,303	2.94%	1,624,272	2.51%	1,748,883	2.26%
045	Casey	394,825	443,300	1.95%	494,060	2.04%	513,553	1.66%	527,230	1.39%
047	Christian	2,302,526	2,735,097	2.91%	3,183,174	2.99%	3,485,277	2.62%	3,779,338	2.39%
049	Clark	1,229,322	1,446,173	2.74%	1,661,497	2.78%	1,805,993	2.43%	1,936,326	2.19%
051	Clay	701,215	790,263	2.01%	890,352	2.19%	934,907	1.81%	968,791	1.55%
053	Clinton	272,191	307,461	2.05%	342,669	2.12%	355,736	1.69%	365,140	1.41%
055	Crittenden	236,572	265,157	1.92%	292,401	1.94%	300,696	1.51%	306,371	1.24%
057	Cumberland	219,322	246,708	1.98%	273,479	2.03%	282,400	1.59%	288,973	1.32%
059	Daviess	2,110,068	2,415,471	2.28%	2,726,676	2.36%	2,859,793	1.92%	2,965,941	1.63%
061	Edmonson	332,216	394,367	2.90%	452,858	2.86%	487,260	2.42%	521,498	2.17%
063 065	Elliott Estill	140,399 337,380	156,259 381,223	1.80% 2.06%	173,573 425,156	1.95% 2.12%	180,360 441,415	1.58% 1.69%	184,842 452,181	1.32% 1.40%
067	Favette	7,342,753	8,442,964	2.35%	9,585,329	2.12 %	10,274,026	2.12%	10,897,517	1.40%
069	Fleming	357,213	414,243	2.50%	468,112	2.49%	492,353	2.03%	514,936	1.76%
071	Floyd	1,493,891	1,671,760	1.89%	1,865,101	2.04%	1,940,825	1.65%	1,993,111	1.38%
073	Franklin	1,504,839	1,739,772	2.45%	1,979,919	2.53%	2,133,441	2.21%	2,266,671	1.97%
075	Fulton	206,673	229,985	1.80%	254,363	1.91%	262,204	1.50%	267,758	1.24%
077	Gallatin	620,913	770,162	3.66%	921,935	3.66%	1,060,266	3.40%	1,203,159	3.20%
079	Garrard	360,746	444,759	3.55%	519,421	3.37%	560,115	2.79%	606,176	2.50%
081	Grant	1,262,752	1,611,307	4.15%	1,991,701	4.23%	2,378,858	4.04%	2,801,787	3.87%
083	Graves	1,207,177	1,384,342	2.31%	1,558,739	2.35%	1,634,999	1.91%	1,706,864	1.66%
085 087	Grayson Green	880,393 270,461	1,020,608 306,343	2.49% 2.10%	1,159,004 340,586	2.53% 2.12%	1,224,172 352,131	2.08% 1.66%	1,284,181 360,942	1.81% 1.38%
089	Greenup	908,623	1,020,486	1.95%	1,132,776	2.12 %	1,168,408	1.58%	1,186,673	1.28%
000	Hancock	282,667	342,471	3.25%	400,048	3.21%	433,395	2.71%	469,830	2.45%
093	Hardin	3,673,512	4,253,807	2.47%	4,911,650	2.68%	5,375,500	2.41%	5,800,766	2.20%
095	Harlan	843,751	933,651	1.70%	1,036,043	1.88%	1,072,237	1.51%	1,090,451	1.23%
097	Harrison	381,630	444,209	2.56%	503,724	2.56%	531,227	2.09%	558,395	1.83%
099	Hart	1,060,312	1,212,148	2.26%	1,369,262	2.35%	1,490,940	2.15%	1,608,952	2.01%
101	Henderson	1,603,327	1,809,736	2.04%	2,019,529	2.12%	2,098,930	1.70%	2,157,924	1.42%
103	Henry	690,546	840,153	3.32%	989,369	3.32%	1,110,333	3.01%	1,229,532	2.79%
105	Hickman	197,484	212,661	1.24%	229,610	1.38%	232,294	1.02%	232,060	0.77%
107 109	Hopkins	1,747,339 313,765	1,962,248 366,981	1.95%	2,184,687 419,333	2.05%	2,268,157 445,075	1.64%	2,330,322 469,381	1.38% 1.94%
111	Jackson Jefferson	19,084,449	21,839,505	2.65% 2.27%	24,783,471	2.67% 2.40%	26,847,026	2.21% 2.16%	28,724,658	1.94 %
113	Jessamine	939.376	1,141,909	3.31%	1,339,475	3.28%	1,452,744	2.76%	1,572,006	2.48%
115	Johnson	668,852	756,733	2.08%	847,558	2.18%	883,358	1.75%	909,757	1.48%
117	Kenton	3,919,090	4,560,251	2.56%	5,256,017	2.70%	5,816,649	2.50%	6,361,031	2.33%
119	Knott	504,967	566,125	1.92%	632,770	2.07%	659,506	1.68%	677,860	1.41%
121	Knox	891,148	1,031,346	2.47%	1,173,277	2.53%	1,241,281	2.09%	1,303,450	1.83%
123	Larue	503,382	582,000	2.45%	659,474	2.49%	704,798	2.13%	748,661	1.91%
125	Laurel	1,996,640	2,405,006	3.15%	2,810,137	3.16%	3,103,841	2.80%	3,390,041	2.55%
127	Lawrence	604,878	700,470	2.48%	794,726	2.51%	838,186	2.06%	878,469	1.79%
129	Lee	197,355	225,652	2.26%	253,181	2.29%	264,629	1.85%	273,531	1.57%
131 133	Leslie Letcher	404,219 711,210	450,687 796,669	1.83% 1.91%	501,188 887,008	1.97% 2.03%	519,352 919,589	1.58% 1.62%	529,495 938,964	1.29% 1.33%
100		, , 0	100,000	1.0170	001,000	2.0070	010,000	1.02/0	000,004	

		2000 Total DVMT	2005 Total DVMT	2000-2005 Annual Growth %	2010 Total DVMT	2000-2010 Annual Growth %	2015 Total DVMT	2000-2015 Annual Growth %	2020 Total DVMT	2000-2020 Annual Growth %
135	Lewis	435,920	502,334	2.39%	570,034	2.47%	602,204	2.04%	631,016	1.78%
137	Lincoln	710,692	833,326	2.69%	952,389	2.70%	1,009,856	2.22%	1,064,614	1.94%
139	Livingston	389,452	455,312	2.64%	520,789	2.68%	564,182	2.34%	604,520	2.12%
141	Logan	860,098	992,953	2.42%	1,123,576	2.46%	1,183,353	2.01%	1,238,348	1.75%
143	Lyon	676,173	816,682	3.20%	961,177	3.25%	1,084,796	3.00%	1,207,523	2.80%
145	McCracken	2,133,941	2,473,986	2.49%	2,829,557	2.60%	3,064,448	2.29%	3,281,531	2.07%
147	McCreary	472,284	546,734	2.47%	622,693	2.55%	659,227	2.11%	691,016	1.83%
149	McLean	307,586	347,801	2.07%	386,359	2.09%	399,639	1.65%	409,532	1.37%
151	Madison	2,422,949	2,909,709	3.10%	3,382,635	3.08%	3,721,546	2.72%	4,041,816	2.47%
153	Magoffin	421,918	485,882	2.38%	552,041	2.47%	583,724	2.05%	611,189	1.78%
155	Marion	430,566	493,018	2.28%	557,313	2.37%	586,990	1.96%	613,091	1.70%
157 159	Marshall	1,259,674 340,828	1,485,393	2.79% 1.38%	1,706,891	2.80% 1.65%	1,850,865	2.43% 1.32%	1,989,946	2.20% 1.04%
161	Martin Mason	678,811	370,147 757,211	1.84%	408,216 839,029	1.95%	420,230 866,434	1.54%	423,126 884,668	1.04%
163	Meade	663,413	853,988	4.30%	1,032,618	4.10%	1,149,359	3.49%	1,290,015	3.22%
165	Menifee	143,467	171,483	4.30 % 3.02%	197,147	2.93%	209,939	2.41%	222,787	2.12%
167	Mercer	618,651	717,870	2.51%	814,244	2.53%	858,140	2.07%	898,406	1.79%
169	Metcalfe	340,816	391,537	2.34%	441,232	2.38%	462,555	1.93%	480,887	1.65%
171	Monroe	276,823	301,892	1.46%	329,562	1.60%	335,548	1.21%	335,626	0.92%
173	Montgomery	713,101	840,320	2.77%	965,877	2.80%	1,048,010	2.44%	1,123,527	2.19%
175	Morgan	358,763	410,583	2.27%	462,306	2.33%	484,695	1.90%	504,046	1.63%
177	Muhlenberg	1,038,484	1,189,606	2.29%	1,339,606	2.34%	1,405,198	1.91%	1,463,303	1.65%
179	Nelson	1,192,457	1,442,285	3.22%	1,686,997	3.20%	1,830,339	2.71%	1,987,063	2.46%
181	Nicholas	171,513	196,651	2.31%	221,335	2.35%	231,683	1.90%	240,424	1.62%
183	Ohio	930,782	1,062,518	2.23%	1,193,475	2.29%	1,249,513	1.86%	1,298,678	1.60%
185	Oldham	1,278,095	1,590,662	3.71%	1,893,728	3.64%	2,138,983	3.27%	2,406,471	3.06%
187	Owen	231,732	276,699	3.00%	317,841	2.91%	338,484	2.40%	359,737	2.12%
189	Owsley	124,675	142,952	2.31%	161,142	2.36%	168,702	1.91%	175,192	1.63%
191	Pendleton	338,493	409,497	3.22%	477,436	3.18%	515,638	2.67%	555,709	2.39%
193 195	Perry Pike	958,955	1,086,384	2.10%	1,223,079	2.24%	1,281,564	1.83%	1,325,194 2,894,164	1.55%
195	Powell	2,177,247 497,464	2,442,594 578,575	1.94% 2.55%	2,727,004 660,035	2.07% 2.60%	2,831,406 700,778	1.66% 2.16%	2,694,164 738,750	1.36% 1.90%
197	Pulaski	1,723,396	2,034,720	2.55%	2,326,378	2.00%	2,464,030	2.10%	2,595,762	1.90%
201	Robertson	44,126	49,042	1.78%	53,819	1.82%	54,916	1.38%	55,372	1.09%
203	Rockcastle	1,204,077	1,418,596	2.77%	1,631,988	2.80%	1,804,438	2.56%	1,958,434	2.34%
205	Rowan	830,467	976,597	2.74%	1,119,213	2.75%	1,211,281	2.39%	1,292,729	2.13%
207	Russell	514,862	597,486	2.51%	676,261	2.51%	709,798	2.03%	739,607	1.74%
209	Scott	1,991,532	2,549,126	4.20%	3,165,962	4.30%	3,797,232	4.12%	4,505,061	3.96%
211	Shelby	1,533,323	1,851,005	3.19%	2,172,325	3.22%	2,444,529	2.96%	2,716,495	2.76%
213	Simpson	896,853	1,019,755	2.16%	1,148,174	2.27%	1,241,631	2.05%	1,330,127	1.89%
215	Spencer	300,410	402,596	5.00%	500,205	4.74%	573,280	4.12%	669,096	3.89%
217	Taylor	587,402	676,765	2.39%	762,511	2.40%	798,669	1.94%	830,142	1.66%
219	Todd	330,629	373,036	2.03%	415,938	2.11%	432,623	1.69%	445,609	1.43%
221	Trigg	536,766	660,853	3.53%	779,903	3.45%	868,511	3.05%	961,428	2.81%
223	Trimble	209,771	251,771	3.09%	292,368	3.06%	316,270	2.60%	341,207	2.34%
225	Union	428,872	495,099	2.42%	570,336	2.63%	613,493	2.26%	656,017	2.04%
227	Warren	3,352,540	3,873,387	2.44%	4,401,017	2.50%	4,736,319	2.18%	5,052,851	1.97%
229	Washington	348,934	400,031	2.30%	450,056	2.34%	471,973	1.91%	492,453	1.65%
231	Wayne	474,610	553,071	2.58%	629,504	2.60%	665,261	2.13%	697,240	1.85%
233	Webster	559,244	624,556	1.86%	692,557 2 205 467	1.96%	717,024	1.57%	734,590	1.31%
235 237	Whitley Wolfe	1,638,010	1,920,462 368,846	2.69% 2.45%	2,205,467	2.74% 2.52%	2,419,132	2.47% 2.10%	2,608,972 467,819	2.24% 1.84%
237	Woodford	319,037 1,018,333	368,846 1,197,850	2.45% 2.74%	419,683 1,378,968	2.52% 2.79%	444,602 1,495,024	2.10%	467,819	1.84%
239	VUUUIUIU									
		128,277,992	149,605,480	2.60%	171,502,490	2.68%	185,672,867	2.34%	199,197,341	2.12%

8.2 Appendix B – State Survey Results

General Survey Responses

Question #1

a. Does you	r agency develop and use traffic growth rates?
22 Yes	(AL, AZ, DE, IL, IN, IA, KY, MA, NH, NJ, NM, OR, PA, SC, SD, TN, UT, VT, VA, WV, WI, WY)
4 No	(AK, CT, MN, NE)
	hat are the values? NM, PA, SC, VT)

Question # 2

a. What type of methodology is used in forecasting your traffic growth rates?		
14 Regression	(AZ, DE, KY, MN, NJ, NM, SD, TN, UT, VT, VA, WV, WI, WY)	
2 Time Series	(MN, NH)	
4 Other	(CT, IL, MA, PA)	

b. 22 Historic traffic growth extrapolation (AL, AK, AZ, DE, IL, IN, IA, KY, MA, MN, NE, NM, OR, PA, SC, TN, UT, VT, VA, WV, WI, WY)

Question # 3

Can documentation of the methodology or modeling be obtained?

 $18 \ Yes \quad ({\rm AL}, {\rm CT}, {\rm DE}, {\rm IL}, {\rm IN}, {\rm IA}, {\rm KY}, {\rm MN}, {\rm NH}, {\rm NJ}, {\rm NM}, {\rm OR}, {\rm PA}, {\rm UT}, {\rm VA}, {\rm WV}, {\rm WI}, {\rm WY})$

8 NO (AK, AZ, IN, MA, NE, SC, SD, TN)

Question #4

What parameters/variables are used in the methodology?		
10 Employment status	(CT, DE, MA, NJ, NM, PA, TN, UT, VA, WV)	
9 Income	(CT, DE, IN, MA, OR, PA, UT, VA, WI)	
6 Number of registered vehicles	(DE, IN, MA, OR, TN, WV)	
14 Population	(CT, DE, IN, IA, KY, NE, NJ, OR, PA, UT, VA, WV, WI, WY)	
13 Land use characteristics	(CT, DE, IL, IN, MA, MN, NJ, NM, OR, PA, TN, VA, WY)	
10 Location	(CT, DE, IN, IA, MA, MN, TN, WV, WI, WY)	
19 Historic traffic growth	(AL, AZ, DE, IL, IA, KY, MA, MN, NE, NH, OR, PA, SC, TN, VT, VA, WV, WI, WY)	
8 Other	(CT, MA, NE, NM, OR, UT, VA, WI)	

Question # 5

What are the sources of your agency's future forecasting input parameters/variables?		
12 Census Bureau	(AL, CT, DE, IN, IA, MA, NE, NM, OR, UT, VA, WV)	
3 Bureau of Economic Analysis (DE, NJ, OR)		
3 Bureau of Labor Statistics	(DE OR, WV)	
0 IRS - Statistics of Income Division		
14 Other	(CT, DE, IL, IA, KY, MA, NJ, OR, PA, SC, UT, VA, WV, WI)	

Question #6

a. Are there different traffic growth rates for each county or groups of counties?			
12 Yes, each county	(DE, IL, IN, IA, KY, MA, MN, NJ, TN, VA, WV, WI)		
6 Yes, groups of countie	S (IL, IA, NH, PA, VA, WY)		
7 No	(AL, AZ, NE, NM, SC, UT, VT)		
b. How did you group the	b. How did you group the counties?		
1 Population	(A)		
5 Geographic location	(IL, IA, PA, VA, WY)		
3 Other	MA, NH, VA)		

Question #7

a. Are the traffic growth rates different for each functional class of road?

 $17 \ Yes \qquad (\text{AL, DE, IL, IN, IA, KY, NE, NH, NJ, NM, PA, SC, UT, VA, WV, WI, WY)}$

```
5\ No \qquad ({\rm AK,\,AZ,\,MA,\,MN,\,VT})
```

b. Are the traffic growth rates different for each vehicle type?

1 Yes (MN)

 $20 \ No \qquad (\text{AL}, \text{AK}, \text{AZ}, \text{DE}, \text{IN}, \text{IA}, \text{KY}, \text{MA}, \text{NE}, \text{NH}, \text{NJ}, \text{NM}, \text{PA}, \text{SC}, \text{UT}, \text{VT}, \text{VA}, \text{WV}, \text{WI}, \text{WY})$

Question # 8

What scheme/categorization is used for the vehicle classification?		
22 FHWA scheme F (A)	AL, AK, AZ, CT, DE, IN, KY, MA, MN, NE, NH, NJ, NM, OR, SC, SD, TN, UT, VT, VA, WV, WY)	
1 EPA scheme (W	WI)	
2 Other (I	(IL, PA)	

Question # 9

a. Does your agency have a methodology for converting between FHWA and EPA vehicle classification systems?	
4 Yes (AL, NH, WV, WI)	
21 No (AK, AZ, CT, DE, IL, IN, KY, MA, MN, NE, NJ, NM, OR, PA, SC, SD, TN, UT, VT, VA, WY)	
b. If yes, please describe or provide documentation. 4 (AL, NH, WV, WI)	

Question # 10

a. How is ADT collected for le	ocal roads?	
1 Always counted	(NJ)	
4 Always estimated	(AZ, MA, NE, NH)	
21 Counted some years, estin	nated other years (AL, AK, CT, DE, IL, IN, IA, KY, MN, NM, OR, PA, SC, SD, TN, UT, VT, VA, WV, WI, WY)	
 b. If estimated, what is the estimated of the functional class 3 Population 6 Proximity to other roads 10 Other local road counts 8 Other 	imation based on? (AK, CT, KY, NE, TN, VT) (AZ, TN, WI) (AL, NM, TN, WV, WI, WY) (AK, DE, MA, NM, OR, PA, SD, TN, VA,WY) (IL, IN, MA, MN, NH, PA, WV, WI)	

Question # 11

a. How often are local roads counted?

0 Annually

10 Three-year cycle	(CT,DE, IN, NJ, NM, OR, UT, VA, WV, WY)
3 Six-year cycle	(KY, SD, VA)
14 Other	(AL, AK, IL, IA, MA, MN, NE, NH, PA, SC, TN, VT, VA, WI)

b. Are all local roads counted?

3 Yes (de, sd, va) 23 No (al, ak, ct, il, in, ia, ky, ma, mn, ne, nh, nj, nm, or, pa, sc, tn, ut, vt, va, wv, wi, wy)

c. If no, what is the sampling scheme?

 $14 \ Described \ on \ page \ 15 \qquad (\text{al}, \text{CT}, \text{il}, \text{Ky}, \text{NH}, \text{NJ}, \text{NM}, \text{OR}, \text{Pa}, \text{TN}, \text{UT}, \text{VT}, \text{Va}, \text{WV})$

5 No sampling scheme (AK, MA, NE, SC, WI)

1 HPMS (IN)

Question # 12

a. What is	your local road VMT estimation methodology based on?
15 HPMS	S (AK, DE, IN, KY, MA, MN, NE, NJ, OR, PA, SD, UT, VT, VA, WY)
12 Other	(AL, AZ, CT, IL, IA, NH, NM, NC, SC, TN, WV, WI)
b. Is the VI	MT county-based?
10 Yes	(AZ, DE, IL, KY, NE, PA, SD, WV, WI, WY)
16 No	(AL, AK, CT, IN, MN, MA, NH, NJ, NM, NC, OR, SC, TN, UT, VT, VA)

Question # 13

Additional comments.

11 (CO, CT, FL, KY, MA, NE, NJ, NC, SD, TN, WI)

Detailed Survey Responses

	Does your agency develop and use traffic growth rates?	Values provided?
Alabama	Yes	By route.
Alaska	No	N/A
Arizona	Yes	Annual traffic growth rates are developed from our network of automatic traffic recorders (ATRs). These ATR- based growth factors are used to adjust older AADT volumes on highways which do not receive a 24 or 48 hour raw coverage count for a given year. These growth factors are mean values from all ATR stations within a specific statewide factor grouping. This grouping is geographically based rather than by highway functional class. Any traffic forecasting that Arizona DOT performs does not use any of these factors as inputs.
Connecticut	No	N/A
Delaware	Yes	-
Florida	-	-
Illinois	Yes	-
Indiana	Yes	-
Iowa	Yes	Enclosed is a copy of the old growth rates. New values are being generated and will be available March 1, 2000.
Kentucky	Yes	Provided by functional class and county statewide.
Massachusetts	Yes	Varies, usually between 1/2 to 1 1/2 % per year based on the area and regional planning models.
Minnesota	No	N/A
Nebraska	No	N/A
New Hampshire	Yes	Short term growth rates (1 to 3 years) are based on functional class. Long term (20 years) growth rates are determined for various regions of the state based on historical traffic data from permanent counters.
New Jersey	Yes	Values are provided to the county level by functional class. More details can be provided in documentation (q#3).
New Mexico	Yes	See attached sheet for values.
North Carolina	-	-
Oregon	Yes	Our traffic growth rates are based on location (i.e. by highway and milepost). For every location where traffic counts have been taken (locations described in ODOT's Traffic Volume Tables), we have a unique future traffic volume (future AADT for specific year), which changes all along the given roadway (particularly as the highway moves in and out of urban areas). These future volumes are calculated using an extrapolated method, based on historical traffic counts. In general, it's one thing to say that 25% of Oregon's traffic growth is on the interstate system. But, it's totally different to say where that growth is on any one of the five interstate roadways. For Planning, we are interested in how the system changes, whether we use HPMSAP, HERS, or some other model. Rather than using the Functional Classification (FC), most of ODOT uses the State Classification System (SCS), to designate the roadway (interstate, statewide, regional, or district). The SCS is much more generic than FC.
Pennsylvania	Yes	See Table #371 and FC Group Designation Table in 1998 Traffic Data report at www.dot.state.pa.us (Select: Programs and Services, select: Traffic Information, select: 1998 Traffic Data Report).
South Carolina	Yes	See attached sheet.
South Dakota	Yes	-
Tennessee	Yes	We figure growth rates, count by count, project by project.
Utah	Yes	Permanent traffic counters are used for cluster analysis to factor 48 hour counts, and these vary each year. Typical clusters are urban/rural interstate, urban/rural arterials, recreational, special construction
Vermont	Yes	These are based on individual continuous count stations, or by group: interstate highways (five year growth factor = 1.13), urban highways (five year growth factor = 1.03), primary and secondary highways (five year growth factor = 1.09).
Virginia	Yes	Values are not available.
West Virginia	Yes	Growth factors correspond to individual county and FC within each county.
Wisconsin	Yes	By two aggregate functional class groupings, principal arterials and others. We don't have the data needed to develop separate growth rates for all functional classes, given a lack of data on local roads and numerous changes in urban areas.
Wyoming	Yes	-

	What type of methodology is used in forecasting your traffic growth rates?	
Alabama	Historic traffic growth extrapolation	
Alaska	Historic traffic growth extrapolation	
Arizona	Historic traffic growth extrapolation (It is a straight-line linear regression simply using a feature available in Excel spreadsheet software and all of our historic AADT volumes as far back as 1974.)	
Connecticut	Entire state is modeled using a traditional 4 step network model.	
Delaware	Regression, historic traffic growth extrapolation	
Florida	-	
Illinois	Historic traffic growth extrapolation, (Illinois DOT, Division of Highways is divided into nine highway districts, each district being responsible for specific counties. With certain exceptions, traffic forecasting is performed by district personnel familiar with the highway systems within their jurisdictions, and their methodologies vary. Historical trends are the basis for most forecasts, but other factors such as residential or commercial development are considered and frequent use is made of the ITE Trip Generation manual. Exceptions are the forecasts made with traffic models for Chicago and eight other urbanized areas by the metropolitan planning organization (MPO) for each area.)	
Indiana	Historic traffic growth extrapolation	
Iowa	Historic traffic growth extrapolation	
Kentucky	Regression, historic traffic growth extrapolation	
Massachusetts	Regional traffic modeling, future year networks, historic traffic growth extrapolation	
Minnesota	Regression, time series, historic traffic growth extrapolation	
Nebraska	Historic traffic growth extrapolation (extrapolated as a volume, not as a rate)	
New Hampshire	Time series	
New Jersey	Regression	
New Mexico	T-Model regression, historic traffic growth extrapolation	
North Carolina	na -	
Oregon Pennsylvania	 Historic traffic growth extrapolation (the VMT methodology from Financial Services involves both regression and time series techniques (part of Mazen's revenue forecast model). The VMT methodology from Policy Section involves traffic growth extrapolation and analysis of fuel tax, WM tax, vehicle statistics, and other demographic variables.) Historic traffic growth extrapolation, some counties have travel demand models which forecast growth based on input 	
South Carolina	population and employment information	
South Dakota	Historic traffic growth extrapolation	
	Regression Regression, historic traffic growth extrapolation	
Tennessee Utah	Regression (our MPO's model in the urbanized areas with MINUTP), historic traffic growth extrapolation (our statewide planning section mostly uses this for the rural areas).	
Vermont	Historic traffic growth extrapolation (We do linear regression based on the historic traffic data. We are looking into changing from a straight line regression for all years available to a more trend sensitive evaluation.)	
Virginia	Regression, historic traffic growth extrapolation	
West Virginia	a Regression, historic traffic growth extrapolation	
Wisconsin	We use a causally based model to develop long-range forecasts both personal and commercial VMT on a statewide basis. In a nutshell, we forecast personal VMT as a function of annual average miles driven per licensed driver by sex and six age groups. These miles driven per licensed driver increase as a function of income and an underlying time-trend factor. The changing age structure of the population over time also drives the forecasts. We forecast commercial VMT as a function o the Index of Industrial Production (excluding computers and office equipment) using a difference-stationary regression model over a 25-year historical time period. To get county specific growth rates, we use the results of the above described procedure to serve as a statewide control total and develop specific growth rates for each county based on each counties projected rate of population growth. We then get the two broad functional class groupings based on observed historical differences (from HPMS and other traffic count data).	

	Can documentation of the modeling/methodology be obtained?
Alabama	Yes
Alaska	No
Arizona	No
Connecticut	Yes
Delaware	Yes
Florida	-
Illinois	Yes (No statewide "cookbook" for forecasting based on historical trends and future land use has been developed by IDOT because no single approach is appropriate for every area or every project. Experienced personnel apply the appropriate methodology in each situation. Documentation of traffic modeling may be obtained through the MPO.)
Indiana	Yes (historic data) / No (modeling)
Iowa	Yes (will be available later this year).
Kentucky	Yes
Massachusetts	No
Minnesota	Yes
Nebraska	No
New Hampshire	Yes (We use a commercial program called Smart Forecast. Documentation can be obtained from the vendor.)
New Jersey	Yes
New Mexico	Yes
North Carolina	-
Oregon	ODOT's VMT methods are being evaluated by a consultant and a final report will be available after July 2000. As a by product of the RFP, we have a very brief description of the 4 VMT methods. I am attaching a copy in case it is useful.
Pennsylvania	Yes (Historic growths are summarized in the 1998 Traffic Data Report.)
South Carolina	No
South Dakota	No (We are currently conducting a research project to review, and if necessary change, our methodology; therefore, I can't accurately answer the next 4 questions at this time.)
Tennessee	No (We don't have a manual.)
Utah	Yes (through the MPOs)
Vermont	-
Virginia	Yes
West Virginia	Yes
Wisconsin	Yes (but not much more specific documentation exists than what I have already stated).
Wyoming	Yes

	What parameters/variables are used in the methodology?			
Alabama	Historic traffic growth			
Alaska	N/A			
Arizona	Historic traffic growth (It is Arizona DOT's current policy not to prepare traffic forecasts for State System Highways that are within large urbanized areas and that are influenced by Transportation Management Areas (TMA's) and/or Metropolitan Planning Organizations (MPO's). We use their forecasts for those roads and streets under our jurisdiction within these large urbanized areas. MPO and TMA forecasts are produced via modeling. Inputs to these models are not known.)			
Connecticut	Employment status, income, population, land use characteristics, location, vehicle availability			
Delaware	Employment status, income, no. of reg. vehicles, population, land use char., location, historic traffic growth			
Florida	-			
Illinois	Land use characteristics, historic traffic growth			
Indiana	Income, no. of reg. vehicles, population, land use characteristics, location			
Iowa	Population, location, historic traffic growth			
Kentucky	Population, historic traffic growth			
Massachusetts	Employment status, income, no. of reg. vehicles, land use characteristics, location, historic traffic growth, households			
Minnesota	Land use characteristics, location, historic traffic growth			
Nebraska	Population, historical VMT			
New Hampshire	Historic traffic growth			
New Jersey	Employment status, population, land use characteristics			
New Mexico	Employment status, land use characteristics, network characteristics (links and nodes, speed, capacities, link lengths, lanes, directional)			
North Carolina	-			
Oregon	Historic traffic growth, metropolitan models, (A combination of income, no. of registered vehicles, population, and historic traffic growth are included in the Finance and Policy methods. Within specific metropolitan areas, where transportation models have been developed, we use growth rates from the models. ODOT is currently working on a statewide model which will be projecting future growth rates based on anticipated land use (which includes most of the above).)			
Pennsylvania	Employment status, income, population, land use characteristics, historic traffic growth			
South Carolina	Historic traffic growth			
South Dakota	see Q#3			
Tennessee	Employment status, no. of reg. vehicles, land use characteristics, location, historic traffic growth			
Utah	Employment status, income, population, vehicles per household, validated by length & number of trips by trip purpose			
Vermont	Historic traffic growth			
Virginia	Employment status, income, population, land use characteristics, historic traffic growth, school enrollment, trucks			
West Virginia	Employment status, no. of reg. vehicles, population, location, historic traffic growth			
Wisconsin	Income, population, location, historic traffic growth, miles driven per licensed driver, licensed drivers, sex, six age group cohorts (16-19, 20-34, 35-59, 60-69, 70-79, 80+), Index of Industrial Production (excluding computers and office equipment)			
Wyoming	Population, land use characteristics, location, historic traffic growth			

		What are the sources of your agency's future forecasting input parameters/variables?
l	Alabama	Census Bureau
	Alaska	N/A
	Arizona	None of these apply.
	Connecticut	Census Bureau, Conn. Dept. of Labor, current traffic counts and transit ridership
	Delaware	Census Bureau, Bureau of Economic Analysis, Bureau of Labor Statistics., building permit/land development tracking process inputs to statewide local area demographic forecasting
	Florida	-
	Illinois	The Department maintains an extensive history of annual vehicle miles traveled (AVMT) tabulated by functional class, by county, urbanized area, etc. An annual traffic monitoring program provides curren AADT at approximately 20,000 locations statewide, which are used to calculate AVMT and to publish a variety of traffic maps. These maps provide a reliable basis for historical trend analysis for specific roadway sections.
	Indiana	Census Bureau
	Iowa	Census Bureau, historic data from automatic traffic
	Kentucky	Kentucky State Data Center (population), KY Transportation Cabinet's Division of Planning (traffic data)
	Massachusetts	Census Bureau, Mass. Institute of Social and Economic Research-MISER, Regional Economic Models IncREMI
Minnesota		-
	Nebraska	Census Bureau
ľ	New Hampshire	-
	New Jersey	Bureau of Economic Analysis, Consultant Economic Analysis
	New Mexico	Census Bureau
]	North Carolina	-
	Oregon	Census Bureau, Bureau of Economic Analysis, Bureau of Labor Statistics, Standard & Poor's DRI, Office of Economic Analysis of DAS
	Pennsylvania	Metropolitan Planning Organization forecasts
	South Carolina	Department Traffic Count Data
	South Dakota	see Q#3
	Tennessee	-
	Utah	Census Bureau, State Office of Planning & Budget
	Vermont	-
	Virginia	Census Bureau, state agencies-local govt., school boards
F	West Virginia	Census Bureau, Bureau of Labor Statistics, DMV vehicle registrations
ŀ	Wisconsin	The Demographic Services section of our state Department of Administration, Data Resources Inc. for the income forecasts
-	Wyoming	

		Are there different traffic growth rates for each county or groups of counties?	How did you group the counties?	
	Alabama	No	N/A	
	Alaska	N/A	N/A	
	Arizona	No	By geographic location but largely defined by principle highway routes and urban areas. But these growth rates are for adjusting dated AADT volumes - NOT FOR CALCULATING FORECASTS!!!	
	Connecticut	N/A	N/A	
	Delaware	Yes, each county.	N/A	
	Florida	-	-	
	Illinois	Yes, each county and groups of counties (historical AVMT growth rates for specific geographical areas (individual counties, groups of counties, urbanized areas, etc.) or specific routes are developed on an ad hoc basis for use by forecasters in the districts.)	Geographic location	
	Indiana	Yes, each county.	N/A	
	Iowa	Yes, each county and groups of counties.	Population, geographic location	
	Kentucky	Yes, each county.	N/A	
	Massachusetts	Yes, each county (or regional planning district).	Regional planning district, urbanized areas	
	Minnesota	Yes, each county.	N/A	
Nebraska		No	N/A	
N	lew Hampshire	Yes, groups of counties.	Based on historical traffic growth	
	New Jersey	Yes, each county.	N/A	
New Mexico North Carolina Oregon		No	N/A	
		-	-	
		For Planning, we have defined different growth rates all along any given highway. It could be rolled up to a district, county, or regional level, but we don't need it that way.	N/A	
	Pennsylvania	Yes, groups of counties.	Geographic location	
ŝ	South Carolina	No (We are currently working on a project to develop rates for each county by FC.)	N/A	
	South Dakota	see Q#3	see Q#3	
Tennessee Utah		Yes, each county (We have a program that calculates growth rates for each county.)	N/A	
		No	N/A	
	Vermont	No	N/A	
	Virginia	Yes, each county (and city) and groups of counties (by district).	Geographic location, individual cities	
Ĺ	West Virginia	Yes, each county.	N/A	
	Wisconsin	Yes, each county.	N/A	
	Wyoming	Yes, groups of counties.	Geographic location	

	Are the traffic growth rates different for each functional class of road?	Are the traffic growth rates different for each vehicle type?	
Alabama	Yes	No	
Alaska	No	No	
Arizona	No	No	
Connecticut	N/A	N/A	
Delaware	Yes	No	
Florida	-	-	
Illinois	Yes	-	
Indiana	Yes	No	
Iowa	Yes	No	
Kentucky	Yes	No	
Massachusetts	No	No	
Minnesota	No	Yes	
Nebraska	Yes	No (insufficient data)	
New Hampshir	e Yes (for short term growth (1-3 years))	No	
New Jersey	Yes	No	
New Mexico	Yes	No	
North Carolina	-	-	
Oregon	N/A	N/A	
Pennsylvania	Yes	No	
South Carolina	Yes	No	
South Dakota	see Q#3	see Q#3	
Tennessee	-	-	
Utah	Yes (but not all classes)	No	
Vermont	No (although the groups can be related to FC: interstates are 1,11; urban are 12-19; and primary and secondary are 2-9)	No	
Virginia	Yes	No	
West Virginia	Yes	No	
Wisconsin	Yes (but only for 2 groups: prin. arterials and all lower FC)	No	
Wyoming	Yes	No (unless we have information on a vehicle type that is going to grow different)	

;	Γ	What scheme is used for the vehicle classification?
	Alabama	FHWA scheme F
	Alaska	FHWA scheme F
	Arizona	FHWA scheme F
	Connecticut	FHWA scheme F
	Delaware	FHWA scheme F
	Florida	-
	Illinois	Trend analysis is done for three vehicle categories; passenger vehicles, single-unit and multiple-unit trucks.
	Indiana	FHWA scheme F
ſ	Iowa	N/A
Ī	Kentucky	FHWA scheme F
Ī	Massachusetts	FHWA scheme F
Ī	Minnesota	FHWA scheme F
	Nebraska	FHWA scheme F
	New Hampshire	FHWA scheme F
ſ	New Jersey	FHWA scheme F
Ī	New Mexico	FHWA scheme F
ſ	North Carolina	-
	Oregon	FHWA scheme F
	Pennsylvania	9 vehicle types.
	South Carolina	FHWA scheme F
	South Dakota	FHWA scheme F
	Tennessee	FHWA scheme F
ĺ	Utah	FHWA scheme F
ĺ	Vermont	FHWA scheme F
ſ	Virginia	FHWA scheme F
	West Virginia	FHWA scheme F
	Wisconsin	EPA scheme
Ī	Wyoming	FHWA scheme F

9		Does your agency have a methodology for converting between FHWA and EPA vehicle classification systems?	Provided documentation or description?
	Alabama	Yes	Use of EPA's default values.
	Alaska	No	N/A
	Arizona	No	N/A
	Connecticut	No	N/A
	Delaware	No	N/A
	Florida	-	-
	Illinois	No	N/A
	Indiana	No	N/A
	Iowa	N/A	N/A
	Kentucky	No	N/A
	Massachusetts	No	N/A
	Minnesota	No	N/A
	Nebraska	No	N/A
	New Hampshire	Yes	We use the conversion required for input into Mobile 5. Mobile 5 documentation explains the process.
	New Jersey	No	N/A
	New Mexico	No	N/A
	North Carolina	-	-
	Oregon	No	N/A
	Pennsylvania	No	N/A
	South Carolina	No	N/A
	South Dakota	No	N/A
	Tennessee	No	N/A
	Utah	No	N/A
	Vermont	No	N/A
	Virginia	No	N/A
	West Virginia	Yes	2-axle dual tire vehicles, including buses, are "Medium Trucks", all others are "Heavy Trucks".
	Wisconsin	Yes	We essentially use the EPA conversion methodology, except that we use state specific data where we have it (from our I/M stations) to estimate the split between the combined FHWA classes 2 and 3 to the EPA classes LDGV, LDGT1, LDGT2 (which we estimate at the following proportions, .554, .327, .118, respectively.
	Wyoming	No	N/A

	How is ADT collected for local roads?	If estimated, what is estimation based on?
Alabama	Counted some years, estimated other years.	Proximity to other roads.
Alaska	Counted some years, estimated other years (some always estimated).	Higher functional class, other local road counts.
Arizona	Always estimated.	Population (Local functional system travel estimates are prepared and submitted by the local government agencies who own them - not the State DOT.)
Connecticut	Counted some years, estimated other years.	Higher functional class.
Delaware	Counted some years, estimated other years.	Other local road counts.
Florida	-	-
Illinois	Counted some years, estimated other years.	Historical trend extrapolation.
Indiana	Counted some years, estimated other years.	County growth.
Iowa	Counted some years, estimated other years.	-
Kentucky	Counted some years, estimated other years.	Higher functional class (collector to local ratios).
Massachusetts	Always estimated.	Other local road counts (regional planning agencies count some local roads), mileage, default values for ADT.
Minnesota	Counted some years, estimated other years.	ATR growth factors for similar roads.
Nebraska	Always estimated.	Higher functional class.
New Hampshire	Always estimated.	-
New Jersey	Always counted.	N/A
New Mexico	Counted some years, estimated other years.	Proximity to other roads, other local road counts.
North Carolina	-	-
Oregon	ADT is counted on a sample of local roads.	Other local road counts (partial count of local roads).
Pennsylvania	Counted some years, estimated other years.	Other local road counts, total annual system growth.
South Carolina	Counted some years, estimated other years.	-
South Dakota	Counted some years, estimated other years.	Other local road counts.
Tennessee	Counted some years, estimated other years.	Higher functional class, population, proximity to other roads, other local road counts.
Utah	Counted some years, estimated other years.	-
Vermont	Counted some years, estimated other years (some roads are counted in our coverage count schedule, and others are never counted).	Higher functional class.
Virginia	Counted some years, estimated other years.	Other local road counts.
West Virginia	Counted some years, estimated other years.	Proximity to other roads, previous counts, number of residences on route.
Wisconsin	Counted some years, estimated other years.	Depends on the transportation district office. Some use crude traffic generation rates derived from land-use (such as 10 vehicle trips per household) and others just make "guesstimates" based on local knowledge, population, or proximity to other roads.

11		How often are local roads counted?	Are all local roads counted?	If no, is sampling scheme provided?
	Alabama	As requested.	No	As requested.
	Alaska	Some counted 3-5 years, others not counted.	No	None
	Arizona	Unknown.	Unknown	-
	Connecticut	Three-year cycle.	No	Random sample for each urbanized area and rural area 1/3 counted each year-factors developed to estimate total local VMT.
	Delaware	Three-year cycle.	Yes	N/A
	Florida	-	-	-
	Illinois	5-yr cycle downstate, 4-yr cycle in Chicago area counties.	No	Seventy to 100 percent coverage on local systems down to and including collectors. Count structures and RR crossings on township roads and municipal streets.
	Indiana	Three-year cycle.	No	HPMS
	Iowa	Four-year cycle.	No	-
	Kentucky	Six-year cycle.	No	Random samples developed for HPMS in 1979.
	Massachusetts	By regional agencies upon municipal requests.	No	None
	Minnesota	4 years.	No	-
	Nebraska	Never as an entire system, only a handful of locations each year.	No	None
	New Hampshire	Always estimated.	No	We estimate VMT for local roads.
	New Jersey	Three-year cycle.	No	The original sample was selected for HPMS. Five local streets were randomly selected within randomized grid clusters. Additional samples were added for tims/h.
	New Mexico	Three-year cycle.	No	Random selection or as needed.
	North Carolina	-	-	-
	Oregon	Three-year cycle (and then only part of them).	No	Samples are picked at random. The idea is to have a certain number per volume group. Volume groups are based on ADT ranges within each functional class as outlined in the FHWA HPMS Manual-Appendix F.
	Pennsylvania	10-yr cycle - state owned only.	No	Locally owned roads are estimated yearly from known system growth.
	South Carolina	As time permits.	No	None
	South Dakota	Six-year cycle.	Yes	N/A
	Tennessee	-	No	As requested for project projections from Design Division and others, for bridge counts, for railroad crossing studies, intersection analysis, high hazard locations, etc.
	Utah	Three-year cycle.	No	Local roads are grouped into zones and then sampled in each zone.
	Vermont	Four-year cycle.	No	We have selected what we think are the most important local roads for our coverage counts. It is not a random sample.
	Virginia	3-,6- and 12-year cycles.	Yes/No (all local roads are counted that are VDOT maintained).	In urban areas, the sample is one count made for each ten miles of road.
	West Virginia	Three-year cycle.	No	Do not sample roads with < 50 ADT.
	Wisconsin	No fixed cycle. Some local roads get counted for special purposes, but most never get counted.	No	We don't sample count local roads. We proposed developing a random sample of locations on local roads and counting them as part of the regular 3-yr count cycle, but mgmt considered it cost prohibitive.
	Wyoming	Three-year cycle.	No	-

		What is your local road VMT estimation methodology based on?	Is the VMT county-based?	
Alaban	na	Counted +2% growth factor.	No	
Alaska	a	HPMS	No	
Arizon	a	Provided by local govt. agencies and typically based on population growth.	Yes (Total VMT over all functional systems by each county is originally based on fuel sales and then adjusted by statewide functional system VMT after the HPMS data submittal.)	
Connecti	icut	Network model factored to HPMS control totals by functional classification.	No	
Delawa		HPMS	Yes	
Florid	a	-	-	
Illinoi	S	Representative samples on county level.	Yes	
Indian	a	HPMS	No	
Iowa		-	-	
Kentuc	ky	HPMS	Yes	
Massachu		HPMS	No, based on regional planning districts, only a few are contiguous with county boundaries (common in New England). Results are routinely summed to non-attainment areas for conformity purposes, and occasionally extrapolated to county-by-county reporting for DEP tracking purposes (reasonable further progress, etc.).	
Minneso	ota	HPMS	No	
Nebras		HPMS	Yes	
New Hamp	oshire	-	No	
New Jer	sey	HPMS	No	
New Mex	xico	-	No	
North Car	olina	Based on growth trends of other FC of roads.	No	
Orego	n	HPMS	No	
Pennsylva	ania	HPMS	Yes	
South Car	olina	Statewide average.	No	
South Dakota HF		HPMS	Yes	
Tennessee		TN conducts short machine counts (24 hours) on 14,000 locations each year as well as hundreds of other machine, WIM, and turning movement counts. Most of these counts are on functional classified routes. TN has a database that develops VMT for each route, log mile by log mile, for all of the classified routes. (This is furnished to HPMS.) The local routes are estimated based on the classified routes.	No	
Utah		HPMS	No (by FC and jurisdiction).	
Vermo		HPMS	No (the data is collected by Town, then we can do a county total if we	
			wish).	
Virgini	ia	HPMS	No	
West Virg	ginia	Road inventory log of state system with ADT count or estimate on each link.	Yes	
Wiscons	sin	We back into the estimates of local road VMT. We develop statewide estimates of VMT, arrived at based on three independent approaches: 1) an estimate based on gasoline and diesel fuel consumption in the state multiplied by auto and truck fleet fuel efficiency (MPG) estimates; 2) the percent change in functional class system weighted changes in AADT levels based on over 100 automatic traffic recorders (ATRs) statewide (but none on local roads and few on the lower level functional systems); 3) the change in the HPMS VMT estimates for arterial and collector highways in the state. From this final statewide estimate of VMT, we subtract out the HPMS VMT as given from the arterial and collector highways and the remainder gets allocated to the local roads (given that we don't have the actual traffic counts or samples to estimate local road VMT directly.	No (not originally, but in the end it gets allocated on a county basis).	
	ng	HPMS	Yes	

13		Additional comments provided?
	Alabama	^
	Alaska	-
	Arizona	-
	Connecticut	CONNDOT uses a network based travel model factored to our HPMS submittal to calculate the VMTs by speed range that are input to the mobile emission model. CONNDOT doesn't use growth rates-HPMS VMT for local roads is based on a sample of local road ADTs.
	Delaware	-
	Florida	In Florida, all areas are in maintenance status; however, may go into attainment status in the next year or so. Historically, FDOT has used a transportation model (FSUTMS, Transplan derivation) to forecast future volumes. These volumes are used to estimate air quality emissions. FDOT does tie the base year model (as required by EPA) back to HPMS based mileage. FDOT doesn't go to any extra effort to deal with local roads. FDOT uses centroid connectors within the model as local road elements.
_	Illinois	-
	Indiana	-
	Iowa	-
	Kentucky	Ongoing study will develop new HPMS local sample and will generate an improved local road estimation methodology. Alternatives include improved collector/local ratios derived from historical count data and a regression procedure derived from other variables (e.g. population, employment, proximity, etc.).
	Massachusetts	Local road VMT estimation for HPMS reporting is based on mileage and default values for ADT. As for NOx and other pollutants, we use the VMT results of the regional travel demand models, which include some local roads, for reporting emission results to DEP and EPA. These results are factored to HPMS before emissions are calculated. A possible aim of MassHighway is to eventually convince EPA that the VMT results of the regional models (and within a few years the statewide model), are more accurate than HPMS factoring because of better coverage of all roads, including local (HPMS is based on samples).
	Minnesota	-
	Nebraska	Nebraska has no air quality non-attainment areas.
l	New Hampshire	
	New Jersey	We have asked our universities for a statistical analysis to develop a countywide VMT estimation process within or parallel to HPMS.
	New Mexico	-
	North Carolina	
	Oregon	-
	Pennsylvania	-
	South Carolina	-
	South Dakota	Our research project is scheduled to be completed in late spring.
	Tennessee	Comparisons are made on rural, small urban, urbanized areas.
	Utah	-
	Vermont	-
	Virginia	-
	West Virginia	-
	Wisconsin	We know we need a better method to estimate local road VMT, such as some type of sampling or estimated local road VMT at the county level based population. But thus far we have not gotten the resources committed to develop a better approach and the ideas remain on the drawing board only.
Γ	Wyoming	-

	Respondent
	Charles Turney
Alabama	(334) 242-6393
	turneyc@dot.state.al.us
	Mary Ann Dierckman
Alaska	(907) 465-6993
	maryann_dierckman@dot.state.ak.us
	Mark Catchpole
Arizona	(602) 712-8596
	mcatchpole@dot.state.az.us
	Stuart Leland
Connecticut	(860) 594-2020
	stu.leland@po.state.ct.us
	Michael DuRoss
Delaware	(302) 760-2110
	mduross@mail.dot.state.de.us
	Harry Gramling
Florida	(850) 414-4928
	harry.gramling@dot.state.fl.us
	James Hall
Illinois	(217) 785-2998
	halljp@nt.dot.state.il.us
	Scott MacArthur
Indiana	(317) 233-1166
	Craig Marvick
Iowa	(515) 239-1369
	cmarvic@iadot.e-mail.com
	Rob Bostrom
Kentucky	(502) 564-7686
	rbostrom@mail.kytc.state.ky.us
	Bob Frey
Massachusetts	(617) 973-7449
	bob.frey@state.ma.us
	George Cepress
Minnesota	(651) 296-0217
	george.cepress@dot.state.mn.us
	Rick Ernstmeyer
Nebraska	(402) 479-4520
	rernstme@dor.state.ne.us
	Subramanian Sharma
New Hampshire	(603) 271-1625
1	ssharma@dot.state.nh.us

	Respondent
	Jim Carl
New Jersey	(609) 530-3510
	jimcarl@dot.state.nj.us
	Alvaro Vigil
New Mexico	(505) 827-5665
	alvaro.vigil@nmshtd.state.nm.us
	L.C. Smith
North Carolina	(919) 250-4188
	lcsmith@dot.state.nc.us
	David Canfield
Oregon	(503) 986-4149
	david.l.canfield@odot.state.or.us
	Gaye Liddick
Pennsylvania	(717) 787-5983
	liddick_padot@yahoo.com
	John Gardner
South Carolina	(803) 737-1444
	gardnerjf@dot.state.sc.us
	Jeff Brosz
South Dakota	(605) 773-3278
	jeff.brosz@state.sd.us
	Bonnie Brothers
Tennessee	(615) 741-2208
	bbrothers@mail.state.tn.us
	Gary Kuhl
Utah	(801) 964-4552
	gkuhl@dot.state.ut.us
	Mary Godin
Vermont	(802) 828-2681
	mary.godin@state.vt.us
	Tom Schinkel
Virginia	(804) 225-3123
	schinkel_to@vdot.state.va.us
	Jerry Legg
West Virginia	(304) 558-2864
	jllegg@dot.state.wv.us
	Bruce Aunet
Wisconsin	(608) 266-9990
	bruce.aunet@dot.state.wi.us
	David Birge
Wyoming	(307) 777-4190
	dbirge@missc.state.wy.us

8.3 Appendix C – VMT from Historical KYTC Data Files (1993-1999)

County	1993	1994	Non-Inte 1995	rstate VMT 1996	(x 1000) 1997	1998	1999
County							
Adair	425	410	417	424	480	497	489
Allen	360	360	366	366	383	402	423
Anderson	462	462	465	500	522	524	570
Ballard	248	236	237	244	245	242	25
Barren	877	881	910	953	966	992	1037
Bath	181	183	202	204	207	213	223
Bell	722	712	729	733	767	785 2579	85
Boone	1958	1968	2139	2234	2484		2376
Bourbon	489	495	499	502	518	546	569
Boyd	1169	1166	1204	1241	1344	1385	124
Boyle	566	565	569	612	622	642	71
Bracken Breathitt	204 387	205 388	203 399	202 408	204 419	247 415	27- 42:
			399 378		-	415	
Breckinridge	364 720	358 739	378 755	387 805	401 864	408 863	41 102
Bullitt Butler	377	379	388	805 391	604 489	426	44
						420 449	
Caldwell	412	375	397	402	460	-	48
Calloway	696	690	694	709	768	779	81
Campbell	1619	1578	1607	1589	1622	1631	156
Carlisle	136	136	145 211	147	143	144 225	15
Carroll	203	201		212	220	-	24
Carter	513	514	538	566	593	593	60
Casey	344	346	355	363	359	368	38
Christian	1484	1668	1586	1679	1582	1682	183
Clark	629	615	637	677	672	694	74
Clay	607	605	601	612	625	646	71
Clinton	221	226	229	233	249	259	27
Crittenden	203	218	223	224	225	229	22
Cumberland	161	162	193	191	193	192	20
Daviess	1988	1959	1974	2045	2153	2185	218
Edmonson	217	223	216	217	216	217	24
Elliott	113	114	116	114	115	119	12
Estill	325	306	312	319	330	337	33
Fayette	4680	5045	5100	5216	5371	5499	547
Fleming	276	296	311	319	325	334	34
Floyd	1412	1405	1457	1452	1485	1510	154
Franklin	877	917	912	936	971	1024	108
Fulton	163	172	188	191	194	207	20
Gallatin	125	124	125	125	135	141	16
Garrard	283	283	291	298	317	341	35
Grant	291	291	336	342	355	360	37
Graves	1036	1039	1039	1077	1126	1147	117
Grayson	751	722	813	868	864	887	96
Green	223	225	230	231	241	248	25
Greenup	906	854	857	875	919	936	100
Hancock	209	209	194	229	240	245	25
Hardin	2142	2497	2325	2413	2463	2536	266
Harlan	764	771	772	781	825	866	88
Harrison	341	320	321	325	315	328	35
Hart	278	279	343	345	345	354	35
Henderson	1397	1421	1454	1507	1626	1610	177
Henry	380	380	405	443	447	470	35
Hickman	149	157	160	166	171	181	17
Hopkins	1555	1558	1705	1668	1752	1790	182
Jackson	224	224	246	253	257	280	29
Jefferson	11980	11618	11664	12329	12551	12864	1210
Jessamine	725	734	753	800	879	933	101
Johnson	588	596	611	610	559	651	66
Kenton	2000	2165	2161	2129	2097	2114	196
Knott	504	504	520	521	546	556	50

			Non-Inte	rstate VMT	(x 1000)		
County	1993	1994	1995	1996	1997	1998	1999
Knox	688	678	690	701	758	794	850
Larue	352	348	348	358	333	355	360
Laurel	1016	1019	1011	1029	1114	1169	1213
Lawrence	485	476	527	545	545	583	606
Lee	169	169	173	177	176	182	184
Leslie	357	359	352	375	409	419	429
Letcher	562	641	646	651	694	705	742
Lewis	382	418	379	394	408	394	413
Lincoln	515	537	550	593	601	612	668
Livingston	244	244	259	263	263	264	269
Logan	627	641	664	674	699	753	825
Lyon	246	310	268	265	301	316	323
Madison	1045 376	1084	1100	1154	1217	1277	1344
Magoffin	376 379	377 379	388 392	369	370	378	385
Marion Marshall	1032	1024	1006	392 923	364 915	376 942	388 946
Martin	359	385	394	923 417	431	942 445	940 402
Mason	476	488	514	568	606	621	636
McCracken	1316	1351	1405	1433	1456	1465	1579
McCreary	396	402	413	425	425	449	475
McLean	258	258	266	269	289	290	293
Meade	533	556	595	638	625	662	662
Menifee	121	120	120	125	127	134	128
Mercer	459	469	490	520	533	534	573
Metcalfe	329	329	332	339	342	362	321
Monroe	272	269	267	271	274	277	270
Montgomery	415	403	410	435	435	443	469
Morgan	288	288	292	310	317	319	331
Muhlenberg	954	953	1039	1049	1074	1057	1145
Nelson	896	898	960	996	1025	1119	1190
Nicholas	135	147	144	146	152	158	171
Ohio	818	818	865	896	930	890	1037
Oldham	557	561	583	590	631	649	871
Owen	175	178	184	191	210	218	221
Owsley	105	105	107	109	107	109	112
Pendleton	265	270	275	280	280	287	328
Perry Pike	864 2111	865 2089	896 2127	897 2159	922 2215	954 2217	965 2267
Powell	412	2089 410	432	439	456	478	479
Pulaski	1477	1454	1518	1540	1578	1605	1605
Robertson	36	36	38	38	38	39	40
Rockcastle	311	322	338	352	345	355	393
Rowan	411	427	442	462	506	527	545
Russell	455	433	442	490	502	514	523
Scott	509	520	594	637	689	735	752
Shelby	505	503	497	505	527	549	667
Simpson	333	328	346	353	371	362	400
Spencer	192	188	198	201	199	218	285
Taylor	505	480	497	506	536	542	563
Todd	276	276	275	277	270	305	347
Trigg	298	346	290	328	353	371	368
Trimble	164	164	166	166	169	165	181
Union	445	448	424	450	447	441	446
Warren	1712	1739	1812	1903	2075	2079	2265
Washington	295	295	312	321	323	341	354
Wayne	397	398	381	395	433	447	454
Webster	523	498	506	512	517	533 753	590 782
Whitley Wolfe	674 272	714 269	715 293	770 283	783 310	753 318	782 309
Woodford	672	269 704	293 697	283 710	734	771	309 808
	072	104	031	110	7.04	111	000

]			Inters	tate VMT (x	(1000)		
County	1993	1994	1995	1996	1997	1998	1999
Barren	249	215	234	226	227	249	270
Bath	180	200	198	194	222	228	240
Boone	1469	1554	1588	1682	1768	2016	2067
Boyd	153	172	156	156	168	187	195
Bullitt	906	910	945	1106	1190	1211	1201
Caldwell	28	35	32	27	29	34	39
Campbell	658	758	725	718	711	695	848
Carroll	285	286	296	303	326	337	385
Carter	399	438	435	415	441	441	477
Christian	310	469	336	366	310	413	411
Clark	358	376	407	476	462	506	488
Edmonson	71	65	69	66	68	75	83
Fayette	1395	1406	1485	1552	1594	1672	1854
Franklin	333	313	374	384	394	430	475
Gallatin	356	325	327	339	366	385	429
Grant	667	694	718	811	899	842	917
Hardin	728	820	833	908	955	1036	1051
Hart	548	540	624	573	634	604	706
Henry	288	294	327	321	344	376	363
Jefferson	6465	6750	7021	7404	7498	7848	7883
Kenton	1680	1698	1863	1940	1958	2020	2079
LaRue	105	104	132	116	132	132	138
Laurel	671	675	720	704	732	754	794
Livingston	85	88	87	89	94	107	115
Lyon	287	289	302	298	300	348	389
Madison	879	860	935	1003	1126	1116	1155
Marshall	231	238	244	255	247	307	319
McCracken	408	425	402	479	467	533	546
Montgomery	176	172	190	221	217	225	226
Oldham	452	472	197	387	524	600	596
Rockcastle	642	614	720	705	706	782	840
Rowan	221	236	216	213	252	247	281
Scott	720	869	823	886	1033	1184	1192
Shelby	654	676	803	772	818	796	840
Simpson	484	411	473	471	479	489	453
Trigg	137	167	148	140	149	164	185
Trimble	14	15	16	17	18	18	19
Warren	1114	1005	1041	1076	1097	1132	1119
Whitley	721	602	706	744	802	803	887
Woodford	175	159	180	204	171	224	252

8.4 Appendix D – Socioeconomic Census-Based Data

OTAL EMPLOYMENT IN THOUSANDS OF JOBS)										
21800 KENTUCKY	1888	1991	1960	1993	1664	1995	1680 3735 R43	1997	1968	199
21801 ADAR; KY	7.883	7.207	7.149	7,674	7 884	7.757	7 579 7 528	7.534	1 860	9.T 10.0
21802 ALLEY, KY 21805 WHEERBON, KY	1111	8.457 5.204	1412	5 etc	1.570	6.455	1.445	5.401	1 224	0.55
21807 BALLARD, KY 21808 BARREN, KY	20.116	3.458	21.165	3.521 21.897	1841 22.001	5.8.13	4 038 21.626	4,119 24,73	4.004	4.27-26.09
21811 BATH, KV 21815 BELLINV	3.487	9.384 11.669	3.601	3,715	179	3968 12:004	1.666	12.035	12.166	4.29
31815 BOONE, KY	45 571	47.721	11.330 50.541	54.424	55 621	60,909	11.041 94.00	//8.924	72.66R	T6.7
21817 BOURBON, KY 21818 BOYD, KY	-8.387 13.82	8,238	9316 1345	8238	1100	9:502 32:549	8.445 33.586	9,785	11,605	10.10
21821 BOVLE, HY 21822 BRACKEN KY	10.002	18-479	17.324	17.97	18258	10.24	10 550	10.33	18.244	20.11
11035 BREATHITT, KY	9.337	4 941	1.525	5,313	1.3(6	4.934	4.777	4,034	4,733	4.34
21827 BRECKNINKKE KY 21829 BOUUTT, KY	11.485	48.8 11.725	12 166	13160	11.862	6.381 96.365	1438	5 011 15.414	15768	8.73
11031, BUTLER, KY	5434	5 259 5 109	6.163	\$101 5745	¥ 336	5.385	5.26	5,434	5.472 3.665	5.49
21835 CALDWELL HY 21835 CALLOWAY, KY	5.12 10.337	17.962	0.244	18114	1 214	19.523	23 201	5799 20705	21.26	. 6.89 21.79
21620 CAMPRELL, KV 21620 CARLIELD, KV	1.665	2916	38 121	10 106	10 555	1 796	33965	1.024	14 792 1 040	1.00
31841 CANROLL, NY	3,762	5.454	0.500	5172	1.500	0.314	1,303	5,744	1.062	0.93
21845 CARTER, KY 21845 CARET, KY	7.015	7.024	6.352	6,354	1211	6 749	1.752	9,273 6,54	8 012	0.52
11147 CHRISTUN, KY 11149 CLARK, KY	49.462	47.083	95 860	56034 14.492	55 (G6 14725	57.336 15.401	57.846 11.080	- 58.62 17.112	58.61 17.64	69.1 17.92
I 1661 CLAY, HV	5734	5.05	8.108	6,726	6,619	9.9E	4,300	6.602	\$700	8.81
21853 CLIMTON, KY 21855, CRITTENDEN, KY	3,771	3346	3824	4,059	1872	4.13	4.176 1.008	4,277	4313	4.35
21657 CUMDEPLAND, KY 21659 DAVIE 98, KY	3 872	2043	201	2016 49.301	3.000	2.993	2 082 52 265	2.991	3.083	211
21851 CORONBON, KY	2.841	2.053	1778	2,737	3 £51	3.017	2,765	7.83	2.065	2.02
THES ELLIOTT, KY	1.492	1.443	4878	1.492	1.466	158	1.605	1.071	1 712	4.82
11667 FAVETTE, KY	173.627 6.646	174.125 0.001	177.177 0.162	160.61	193,424	187 388 8,990	113.603	196.974	111.610 8.011	208.47
11660-FLEMINO, KY 21871-FLOY0, KY	14,763	14.628	14 177	0.200	1 861	14,780	18,543	9.239	14.666	6.97 15.34
21672 FRANKLIN, KY 21675 FLUTON KY	4113	26.15	34734	4.525	125.411	25,799	15.064	26.975	17.376	20.49
21677 GALLATEN, KY	1.61	1,7.29	1.788	1775	1.060	2.207	3 470	2.022	1729	2.91
21875 OARRAND, KY 21887 ORANT, KY	4725	4.010	4150	4 707	4785	4-562 6-958	4 862	5,007	1000	5.15
21683 ORAVES, KY 21665 ORAVBON, KY	34848	15080 9624	15821	16196	18.115	16.607	11.675	17.012 11.203	17 200	11.53
1187 OREEN KY	4.618	4.45	4.631	4.055	4.664	4.69	1,23	4.242	4.279	4.38
T166 GREENUP, KY T1691 HANGUCK, KY	12100	12 (98) 5,191	12264	11.093	18 669	11.467 5.338	11.660	±1.517 6.08	11 762	11,89
21662 HARDIN, KY 21665 HARDAN KY	13.12	54.414	95.82E	11011	55262	10.641	10,400	57.811	\$7.806 1.0.203	68.7
21807 1-APRILION, KV	7.55	7.938	0.11	7.922	7.04	7.993	7 506	0.034	8,210	0.3
21005 HART, HY 21103 HERODERSON, KY	32 194	8.47 77.097	11/44	5.947	7 207	7.401	7 208	7.338	7.488	1.62
31109 HENRY, KY	5218	6,903	9.646	5.800	5718	5,667	5.50	5.834	5708	. 6.79
21106 HICKIMIN, KY 21107 HOPKINS, KY	2113	2070	2167	2.042	2.057	1,621 22.67	2.046	2124 23.212	2100	223
TTUR JACKSON KY 21111 JEFFERSON KY	3.64	3 596	8572	3546	1.019 173 AFR	3741	4708	4 834	4 Bit1 81 7.262	503
21112 JERSAMINE, KY	12 438	12719	13480	12.404	11.677	15,200	10.41	11.20	18 222	19.01
21115 JOHNSON, KY 21117 HENTON, KY	2871	£127 30.902	0.482	9737 50105	8.001	0120 54.259	1,005	0.922	1078	9.2 11.14
2111B KNOTT, KY 2112T KNOX, KY	4833	3848 0.094	4.838	4.051	4.000 9.886	4.548	4.451	4.841.	4,685	4.74
1112S LARGE, FY	4.111	4.546	4 112	4.105	4.658	4.768	4773	4.859	1826	6.00
11125 LAUREL KY 11127 LAVRENCE KY	21.114	21.602 3892	22.508	23 097	23,007 4,137	4.23	38,080	27 173	27,985 4 403	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
31136/LEE, KY	241	2.630	2 375	2 392	2.452	2.690	1478	2.91.4	1452	2.11
21122 LETCHER KY	1.01	7.964	7 590	7.400	1 462	7,030	7 500	7.051	7.811	1.73
21135 LEWIS, KV 21137 LEVICOLN, KV	4765	4.724	4,550	4.013	4.50	4.627	4 50	4.521 3.411	4 550 7 636	4.05
211 SELLWINGSTON, KY	2111	3629	2.541	3643	1116	3608	1729	3874	1.88	394
21141 LOOMH, KY 21143 LYON, KY	2961	12.025 2.065	12460	12,901 2,858	13.464	13603	1,11	13:999	12,066	11.10
31145 WCCRACKEN, KY 31147 WCCREART, KY	39.454	78020 3509	39,815	41819	42,318	43.065	44.672	45.879 4.431	47 085 4 81	4803
21146 MCLEAN, KY	3.312	3331	2,158	2056	1 112	9 2 Q Q	3,283	2.379	1426	3.60
21151 WEBBON, KY 21152 WEBBON, KY	22 684	20.002	23104	20,202	1000	21 CE 3 DOR	31 204	20.413	34 007	24.53
21155 WARKOR, KY 21157 WARKSHALL KY	11948	7.813	C 22 1.1.428	7.307 13008	111558	7.318	7.576	5017	8,238	8.42
11150.90FTbJ,HY	12,714	3831	3.994	3994	1746	3901	158	3,605	1641	3.6
11161 WABON, KY 11163 MEADE, KY	10.121	10.992	11,472 0.194	11.636 5.490	12.017	12,394	12 001	12.229	12,562	12.93
21105 MEHRIEE, KY	1.112	1.083	1.681	1.737	1.761	1,850	2.018	2.035	3050	2.07
21180 MERCER, KY 21180 METCALFE, KY	8.81 8.748	8,216 4,72	4128	4.643	10278	4.912	4,801	10.407	4 041	5.03
21171 WONBOE, KY 21173 WONFDOMERY, KY	1.275	5,005	11.11D 2.17	6.301 0.012	1 307	5-525 10 1 20	1515	0.931	12341	0.17
21175 MIRDAY, KY	4.184	4,243	-4.384	4.445	4.451	4,618	4.515	4.97	5.075	5.17
11177 MUHLENBERG KY 11179 NELSON KY	14117	11.682	14.460	11.464 14.662	11.202	12169	11.10	12.402 17.402	12,664	12.00
INTER NECHOLAS, KY INTER CHIOL KY	3183	3,219 7,816	3126	309 7.978	1019	3,056 8,106	2 666	3131 9.079	3 166	8.24
DITUR OLDHAM HY	13.134	12:05	13 164	12497	14.384	16,337	11.912	16.543	9.315 17.321	11.92
21187 OWEN, KY 21189 OWELEY, WY	3.862	3572	1102	2.707	3 800	2.695	1,216	1.375	1707	2.94
21301 PENDLETOR, MY	4 3 4 5	4.276	4.271	4.463	4,450	4.64	4 575	4.503	4 200	4.07
11105 PERMY KY 11166 PUE, 89	27.40	28106	13.27 17.604	13844	28.06	30126	28.574	30.605	11.010	31.69
11160 POWELL KY 11160 PULASIA KY	3 611 26.791	3736	8141 27 544	4.28	1 61	4.64 29.467	1079 23,000	4,066 30.672	5 004 31 647	6.2t 32.6
21201 ROBERTSON KY	0.297	0.788	0.804	0.836	1.806	0.827	1.852	0.992	1.89	0.89
11100 ROCKCASTLE, KY 11105 ROWNS, KY	4,113	8,952	4.60	5.049	18.202	5.459	111504	11.146	11.282	11.67
21207 RUDGELL, KY 21208 BOOTT, KY	8227	0.601	13,061	9,200	1 221	0.422	23 400	0.754	1 DEG 25 417	0.95
11111 (IHELEY, KT	14,114	14.759	11.144	15821	11.434	16.811	11004	17.414	17.681	11.90
11113 BIMPSON, KY 11116 BPEYR BP, KY	2.941	2.958	2.414	9 254	# 383 3.62	2706	11	18.393 2.851	156	9.19
11117 TWALCH, KY	13.612	13642	14201	14,000	14.21	14.637	14 641	14,219	14,416	14.59
21216 YODD, KY 21321 TRIGO, KY	4464	4.358	4 637	4.992	4,477	5.085 4.042	1.026	5172	4778	5.23 1.79
21222 TRANSLE, MY 21225 LINION, MY	3448	2 13	3 162	2.05	1 124	2073	3 DEA 8 202	2131	3 180 7 807	219 T.00
21227 WARTEN, KT	40.171	48,710	33 650	51,740	53.617	30.0 m	57.010	20.171	\$1,277	61.33
21220 PASHINOTON, KY 21231 PARTIEL KY	4.000	4.544	4 552	5,155	1077	5-240 7-142	5.22 r 670	5.427	5.470 7.944	5.54 8.03
21233 WEERTER, KY	8.658	6.037	6.13	6.226	8.341	6.036	4.686	6.1.27	9.282	.6.42
21236 WHITLEY, KY	14:342	14.108	2,160	14.426	14,268	15168	14,919	14.993	15.065	16,1
21237 WOLFE, W	1.									

NOUBANDS										
JNTY INAME. 21000 RENTUCKY	1990	1991 3716-45	1992	1961 27(5):861	1994	(9年 第613	1996	1007 WD 36	1998	1909 3971 19
21001 ADAIR KY 21002 ALLEN, KY	15.373	15.005	15.543	15,128	15.98D	10.257	15.005	91.45 10.104	10.667	10.044
21085 ANDERSON, KY	14 88.0	15.112	15-556	10.184	85,747	17.183	17.735	11.07	10.580	15,783
21007 BALLARD, KY 21009 BARREN, KY	34.085	34,291	. 34,439	7.585 34.073	35.001	35.745	8,30 36,246	36701	36:971	37.319
21011 (SA014, KV 21013 (SEUL, KV	9713 31.465	9734 91.115	9.069	9.960 30.773	30.657	10.100 30.325	10.138 30.052	10.361 39.796	11.57	10608
21015 BOONE, K1 21017 BOURBON, KY	税 12 約25	80.574 19.300	82,906 19,323	65,314 19,285	67.538 19.226	20.016 19.237	72,858 19,217	76.121 19.341	79,667 19,365	計511 1日41
24319/BOYD, KY	51105	51,297	51.068		10.654	0.35	5011	49,828	42/514	49.514 27.310
21001 BOYLE KY 21000 BRACKEN, KY	7.004	26,754	B106	35.307 0.129	20.00	0.152	0.254	27 0725 11.351	27.10	15 /525
21026 BREATHTT, KP 21027 BRECKINGIGGE, KY	15.850	15.013	10 51	15.285	75.37	15.402	15.517	15.857	15.887	17.505
21029 BUILTT, KP 21031 BUILER, KV	47.897 11.234	49,211 11,289	50.923 11.361	53000 11.3%	54.702 11.542	55.934 11.625	57.102 11.657	57.855 11.768	55.306 11.509	60319
24033 CALOWELL, KY	43,221	13.082	12.1	12,964	13.16	13.224	13.264	(3.39)	13.319	13.963
21636 CALLOWAY, KV 21637 CAMPBELL, KV	90.767 84.041	30.996 94.257	31.395 34.371	1722 16.667	32,089 86,183	\$2.273 86.966	32.577 87.082	約.1%9 17.4%6	20.475 FF.300	3×04 87.907
2158 CARUSLE, KY 2158 CARROLL, KY	5.219	5,345 0.424	5,345	5.390 9.515	6.73E	5.341	5.347 9.685	6.372	6.313	5.347
21045 CARTER, KY 21045 CASEY, KY	24.395	28.75 14.150	24.057 14.427	25.427 14.56	25812	25.994 14.45	25.282	75.551	25.651 14.772	27 134 14.550
21047 CHRISTIAN, KN	55.913	67.517	71.052	70,760	21.422	12:072	73.182	73.296	72.480	72.073
21049 CLARK, KY 21051 CLAY, KY	29.584	29.74 21.684	30.048	30.336	30.483	30.629	31.485	31.648	91.979 22.804	22,769
21053 KUNTON, KY 21055 KAITTENDEN, KY	P.158 P.195	9.193 P.227	9.169 9.265	9,243	9.239 9.364	9,288 9.402	9.258	9.278	9.344 9.571	9,381
21057 CUMERPLAND, KY	6.77	6.747		6780	6.907	6,905	6,939	5.961	5.929	6.837
21059 CHV1ESS, KY 21051 CD MONSON, KY	B7.262 10.345	10,361	10.237	- 60.328 NS 302	10.515	10,506	11 OD1	90.06	91149	11,416
21003 PLLIOTT, 415 21005 PETILL, KY	14,881	8.52% 14.294	£.1525 15-174	6.592 15.315	15.527	6.54E 15.472	0.521 15.500	15.451	15,550	15,005
21087 PAPETTE, KY 21089 F LEMING, KY 21071 F LOYD, KY	238.250	225.512	251.852	228.027	235.945	257.306 12.984	238.871	239.914	241.752	246,191
21071 FLOYD, KY	12,268	12.423 43.768	12:573 43:856	43,996	43.574	43.652	43.532	43.357	43 346	43,812
21073 FRANKLIN, KY 21075 FULTOR, KY	44.21B 8:246	44.348 8.158	44 B4 B 17B	45.212	45,414 7,415	45.922 7.395	48.065 7.761	45.202 7.608	48.445 7.530	45.687
2K077 GALLADN, HV 2K079 GALBARD, KY	5.429	5,506	5.668 12.1E	5.607 12.30	6.052 12.501	5.168	6.64 13.551	6,779	7.169 13813	7.315
21001-GRANT_HCF	15,815	15.304	16.309	17,395	17.960	10214	19.345	19.017	20.346	2007
21013 GRAVES, HY 21085 GRAYSON, KY	21.111	25,758	21.954	34.365 72.238	54.791 22.517	22,712	30.54	21.6%	25.034 25.772	24.085
2108/ GREEN, KY 21089 OPEENUP, KY	10.388	10.350	70.4 JV 1026	10.381	10.361	10.488	10.545 JV.104	10.588	10,842	10.874
21089 OREENUP, KY 21091 HANCOCK, KY 21093 HARON, KY	7.967 88.446	7 107 B7 753	7.835	7 517 90 86	8.14 91.18	5.486 81.348	8,700 90,148	9.97 90.78	8.936 91.463	8.504 50.760
21095 HARLAN, KY	36.63	36.484	36,366	36.143	36,975	第四日	关:48	36,280	34,941	34.958
21097 HARRISON, KY 21090 HART, SV	16.267 14.914	15,437	16.689	16.6% 15.671	6.7% 6.951	· 691 · 6191	17 115	17,275	17.578	17.688 16.86
21301 HENDERSON, KY 21303 HENRY, KY	43105	45724	43815	44.127	44 121	44,270	44 354	44.647	44.494	44 /07
21105 HICKMAN, KY	5.527	5.854	5.558	6,510	522.0	5,285	6.279	6,237	5.385	5.257
21107 HOPIONS, KY 21109 JACKSON, KY	45:054	48,298	46.337 12.275	45.188 12.315	45.125 12.515	40.407	45.474 12738	40.25	40.38	40.54 13.032
21111 JEFFERSON, KV 21113 JESSAWINE, KV	466-516 30.7	666.733 31.399	868136 3123	675.06 39.00M	6/0.436 33.642	621.267	6/1153 35.271	671,734 36,077	672.089 36.530	624.788 37.514
21115 JOHNSON, KY	23,292	29.341	25.52	23,878	29.86 144.68	24 063	24.039	24.036	24.021	3.5
21117 VENTOR, KY 2110 FENDT, KY	142,169	142,098	143 122 19 198	144.304	19,339	145,206	145,175 18,191	16,019	145734	1483565 19116
2101 MIGE KY 2103 LARUE, KY	29675	30.09	30.372	30.3%	51.031	31,255 12,551	51.30	31,494	51.77P	32.785
21125 LAUREL, KY 21127 LAWRENCE, K1	43.6838 14.01	44.325 14.230	45.256 14.874	48.497 14.751	12 150	41 (e) 10 28	89,115 15,387	10.114 15.468	50,725 85,641	51 533
21129 LEE, K1	7.428	7 822	2.691	7,818	7,769	7.676	2.807	7.97B	8.02	BOXE
21131 LEBUE KOP 211331 ETCHER, KP	18621	13638	13723 26.974	13728 28.68	13,745	13.586 36.811	19.476	13.49	13 (92)	13.679
21196 LEWIS, KY 21197 LEWIS CEN, KY	12,988	13/032 20.278	13.089	13.087 20.889	13.25	13.388 21.443	13,491 21,783	19551 22007	13.573 22.37	13.968 22.976
2139 LIVINGTON: KP	1058	14 604	9148	9136	3.107	: 9.721	9.189	9.82	9.431 35.148	3,505
21141 LOGAN, KY 21143 LYON, KY	1.52.1	6.642	7.164	7.817	75 (F) 7 501	7,730	25,006 7,91	医1束 7.9%	8.051	26.31B (5.21B
211B MCCRACKEN, KY 2116/ MCCREARY, KY	15.63	63.282 15.777	63.728 15.595	64.191 10.147	847627	84 571	F& 738 T0 585	64,788	54.82 10.850	16.288
21940 MOLEAN, KY 21961 MADISON, KY	0.604 57.607	9.811 52.450	9.686 52491	9.597 80.924	9.648 61.91	0.6K2 K2.074	0718 64.236	9.784 65.46	9.830	0.878 62.115
21153 MA38FFRI, KY	13,113	13.187	13.352	13506	13.605	13638	13.707	13:907	13.836	13 906
21195 MARTON, KY 21197 MARSHALL, KY	16.499	15.625	18.61B 27.942	E741 28.41	16.699 38.725	10,001 29,008	16.943 29.67	17.000 29:818	17.029	17.1 30.547
21169 MARTIN, KY 21161 MAGON, KY	12529	12.656	12788	12,848	12,895	1272 17.065	12,674	12.27	12.12 17.018	12 196
21103 WEADE, KY 21105 WEHE'EE, KY	10.4 mm/m	25,977	24.155	25,385	25.900	20.96	27:528	25,221	25.515	20 164
		10.285	15/624	19.6	10,715	20.071	20.105	30.425	20.650	20.948
21182 METCALFE, K7 21171 MONROE, K7	8.062	B.084 11.407	8.992 11.468	0.18 11.511	11.599	93 11494	11.302	9.486 11.293	11,202	9812
21173 MONTOOMERY, MY 21175 MORSAN, KY	11.68	19518 12.421	19643 13.14	13.165	20.222 13.306	20.346	20.517 13.382	20794 13.482	20.500 (3.58)	21 152 13,766
21177 WUHLENBERG, KY 21179 MELSON, KY	91,279 29,778	31,284 30,373	31,114	31.087	91,074 32,479	31.672	81,631	\$2.006 36.173	32.18 36.8M	32.460 35.400
21381 MICHOLAS, KY	E735	5.758	6 629	ERR	6.902	5.96H	6.963	7 (022)	- 6.99E	7.035
21103 OHO, KY 21105 OLDHAN, KY	10.572	21 201	21.215	21 300 36 138	21.68	21.851 /1.012	21.78 42.112	21.982	22.005 44.401	22.225 45.690
all for surplant bys	0.00.01	0.510 5.132	0.982 6.18	9.68 6.273	9 MDC 5,412	2.001	0.832	10.083	10.283	10.32
	12.079	12.997 30.736	12.047 30.024	12 562	13 19	10.966	13 666	10.648	13711	15.675
21195 PIKE, K1	72.92	72.93	13.022	73.136	73.191	73.442	13,074	72.575	72.13	72.625
21197 POWELL KY 21199 PULAGR, KY	11,849 48,667	11.651 50.344	11.863 51.365	12.018 R2.132	12.(29 53,394	12.184 54.772	16.083	12.695 医7%	12.99 55.399	13.122 95.007
2136 PULASH, KV 21201 ROBERTSON, KP 21203 ROCKCASTLE, KV	2114	50,344 2,134 14,901	2162	2 175	2.10	2,200	2.485	2181	55.390 -2.700 15.947	7.722
21205 ROWAN, KY	20,824	21.67	20.942	21.15	21.331	21.643	2164	21.945	22.100	22.661
21209 SCOTT, KY	23.044	14.988 24.418	15.287		15,750	15,538	15.190	15.332 29.445	10.228 S0.888	15.386
21211 SHELEY, KY	24 0722	25.347 15.406	25.781 15.548	36,296 (6,606	36.904 15.836	17 635 16 014	29 196	36.807 16.094	20-590 16.396	29.937
21213 SMPSON, HY 21215 SPENCER, HY	15.149 6.847 21.177	6.945	7 (134	7.236	7.629	S.169	9.66	9,178	9.664	9.766
21212 TAYLOR HY 21219 TOOR KY	1050%	21,402 10,951	21,738	22/034	22:399 11.229	22,680 11,113	22,708 11 182	22.875 11.18	22,999	29.076 11.354
21221 TRISG_RV 21223 TRIMELE, KY	10.355	10.450	10.044	10.904 17.005	11,18	11.452	11.068	12.139	7.621	12,495
21225 J.NION, KV 21227 WORKEN, KV		10.581	16.335	IS.MR	81.42	10-347	10.40	10.527	10.575	15.551
science in organity with the second	10.464	76.534 10.465	70.738 10.491	10.405	10.557	64.158 10.641	101/31	85.55P 10.824	67.321 10.915	85.005 10.95g
21231 WARNE KY 21233 WEEKTER, KY	17.466	12,642 13,625	12,905	17.90	151年 1155	18:04	19.6 13.47B	18.900	19.104 13.407	19,216 13,517
21295 WHITLEY, KY 21237 WOLFE, KY		33.468 8.739	34,022	34.734	34,884	35.078	36.45 7.306	35,545	96.948 7.860	36.178
	2,404	-C.R/20.	8.675 20.761	6.969 30.948	7.0%	72		7.276	22/843	7,412

NTY PANE	1890	1991	1992	1000	1994	1996	196	1907	1999	1999
NOD RENTUCKY	12/20	16735	18676	16761	10000	17,393	17744	19585	1828	19232
ALLEN, KY	11824	12001	1001	12001	13360	13100	13/36	13030	13915	1.0101
ZIDES ANDERSON, KY	10-00*	1528.81	8523	16216	18-895	168882	18245	17583	17938	18688
21007 BALLARD, KY 21009 BASREN, KY	14641	404	16267	F686001 1-59700	117488	11270	18788	17476	19070	19482 19583
21011 SATH, KY	11999	11:06	12020	11632	11600	11782	12221	13305	13491	13741
21019 BELL, KY 21015 BOONE, KY	11183	11569 18364	13064	12132	12212	12551	1.2781 20506	13269	1,3629	1.4010
21017 (900) REON, KY	198220	16574	17430	17277	17606	17061	19200	20272	19530	19963
24019/80VD, KY 24001/80VLE.KY	10617	10,07 1554 II	101127	18545	18529	1824	19112	19661	30299	38.9
21033 DRACKEN, KY	1006.3	12000	12577.	12/80	1,2036	12073	1150	1.4585	13051	14073
21225 BREATHITT, KP	10525	1/361	12103	12537	13458	V185.2	11682	12000	13402	1 2080
21037 BRECKINRIDGE, KY	1298-	12481. TEE9	12575	12837	1.9012	12000	13142	1 3084	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14158. 16/04
2029 BUILTT, KM 2009 BUILER, KV	11199	11154	11630	11832	12058	12213	12877	13291	13009	13184
21033 CALOWELL, KV 21036 CALLOWAX, KV	13090	13989	14541	14936	14951	14907	16117	16324 18073	15447 18647	16658
21037 CAMPBELL, RY	17225	TW5	17284	17462	17264	16042	10652	19315	19765	30.86
21039 CARUSLE, KY 21031 CARROLL, KY	19806	19381	16114	15785	16473	16194	17035-	16664	16006	17951
21045 CARTER, KY	10735	11050	19524	12070	10100	12100	12328	13280	1.3670	172825
21045 CASEY, KY	KEED	1005	11-400	11125	11480	11256	11515	13447	1.2508	12511
2047 CHRISTIAN, KY 2049 CLARK, KY	11907	12551	12080	126821	12015	1.27681 17766	1 30302	19105	13288	13418
2050 CLAY RV	9842	-10237	10556	10714	10699	11201	11347	11921	12050	12,50
21063 IOLINTON, KY 21065 CRITTENDER, KY	9968 12915	10345	10822	11024	10794	11006	1184D 13968	1.2087	12615	1,3796.
21057 CUMEERLAND, KY	\$1515	10530	11459	11286	11332	1058E	11109	11976	12222	12494
20169 DAM/ESSLKY	16594	16654	1643	17086	17555	. (1217	101021	18798	19536	20306
21061 CD WONSON, KY 21063 CLEDTT, KY	10205	10235 0084	0096	31(3)	3113	0.550	11345	11015	12291	17473
TROOS JESTILL, KY	10775	10852	11250	11182	11438	11/21	12152	13025	1.3850	13942
21087 PAPETTE, KY 21089 FLEMING, KY	21910	21719	21062	22171 13143	121180	1280	2882	280821	25044	35408 13540
21071 FLOYD, KY	12441	12437	12910	12913	12836	13145	13222	13666	14155	14900
21073 FRANKLIN, KY 21075 FULTON, KY	14955	18550	18833	18884	19258	19794	31306	21258	21893	22152
2107753ALLATIN, HY	14996	14504	16119	16732	13608	13975	17821 14018	10196 14619	18585	19258
2179-GARBARD, KY	14385	13008	14000	14028	1.0514	13412	13571	1.4495	1.8584	1.4661
21001-097ANT_K7 21003-097ANT_K7	13035	18752	14109	14862	1.8387	1.4402	14722	16010	17227	16305
ZEEB GRAYSON, KY	12139	12315	12/27	12578	1.2578	13884	11295	1 207	1.8352	1.6102
2108/ GREEN, KY 21089 OREENUP, KY	1283	12536	12210	12767	12904	1307	12211 15787	1,25001	I SCADE I BUCEN	13/60
2691 HANCOCK, KY	17467	1/123	17031	17300	12121	17590	18325	19424	19317	195.56
21093 HARON, KY	14421	14590	14955	14068	14930	16191	14837	18334	16536	16671
21095 HARLAN, KY 21097 HARRISON, KY	11960	11801 14990	12208	15145	11827	1638	11814	12245	12690	1,2796 16578
21090 HART, KY	11699	12238	12363	12362	12552	1.2228	12604	13261	13454	13210
21301 HENDERSON, KY 21303 HENRY, KY	19075	0320	17102	10300	18415	10,000	10005	15050	30,96	30014
21105 HCKMAN, KY	1985	13/201	10,785	1000	1951	16518	16/22	10532	162527	18285
ZERP HOPPONS, ICY	10/86	16,255	162110	16252	10-02	16278	16781	17207	17381	18,230
21100 UACHSON KY 21111 LEFFERSON KY	9164 21136	9696	21796	10222	10/64	10E73 2804	11102	11745	11802	12017 25534
21113 JESSAWINE, KY	15802	15487	19964	1倍(3)	15897	16:40	17066	17629	10254	16665
21115 JOHNSON, KY 21117 VENTON, KY	12339 19574	12392	1,5599	12794	12989	13378 20066	13622	13809	14869 22717	1455
21 UP FNUTT, KY	10551	10505	10553	10574	10794	11116	11448	1,0066	12749	1,2948
21121 MNOX KY 21123 LARJE, KY	10455	10774	10960	11107	10300	11114	11354	10205	12086	12251
ZITES LAURED, HY	1010	13981	USC V	13544	13030	1888	Lates -	14028	16260	16/64
2112/ LAWRENCE, KT	11154	11144	11134	11211	11200	11258	11811	11988	12028	/ 2185
211291,EE, KN 211381,EBUE, KN	1036	9820	10030	11044	108/7	10726	11062	11449	11691	11872
211391,ETCHER, KY	1/817	11787	11668	11725	11556	11B0E	11:597	12504	12966	3146
21135 LEWIS, KY 21137 UNCOLN, KY	9916 11E18	10061	10558	1042	10420	10518 12947	10553	11231	10936	11119
2138 LIMNEETON: KP	16040	16530	WEEE.	16766	16775	17360	18110	19521	19095	19367
21141 LOGAN, KY	13622	13585	SELL	1.4740	1/1748	16420	16962	10113	16411	16538
21123 LYCN, KY 21185 MCCRACKEN, KY	12130	1210E	12255	110311	12030	17215	12720	13057	13320	1922
2114/ MCCREARY, K1	0.295	9127	9672	3/47	100266	10028	10170	10628	10041	11128
21142 MOLEAN, KY 21161 MADISON, KY	18897	13526	14252	13952	1467	14753 -1-5348	16238	1558E 18322	16743 1698/	16201
21153 MAGEFFEL KY	9214	9825	10132	9915	10124	10345	10296	105207	11,249	11466
21165 MARION, KV 21167 MARSHALL, KV	13239 96215	13380.	13672	1 3557	13571	13982	14351 19055	16325	1690	16840
21157 MARSHALL, KY 21169 WARTIN, KY	12503	18.82	12542	12833	12/06	13081	13550	13405	14030	1436
21161 MAGORI, KY	16121	14771	16187	16062	15514	16540	15909	16664	1766	1101
21103 WEADE, KY 21105 WEIRFEE, KY	13146	9072	10236	3352-	10422	105820	1 1257	13052	1.585	14150
JI 10/ WERCER 4/V	15447	10517	10025	192200	I ILTER	16304	16772	1,0785	110282	1830
21102 METCALFE, KY 20171 MONROE, KY	1168D 12772	1700	12139 1E64	12022	12576	12298	12589	13315	12306	1318D
21173 MONTGOMERY, MY	14349	13995	14398	14071	14400	14636	15016	16966	17377	17589
21175 WORBAN, KY	展41 13898	9525	9265	9141	9171	9246 13594	9688	10439	10758	10936
21177 WUHLENBERG, KY	15743	13402	13295	13137	13561	16048	19943	14215	14655	18573
21381 MICHOLAS, KY	13581	13234	13386	1,2542	1,2962	12/00	12966	13915	1400	1.874
21103 OHO, KY 21105 OLDHAN, KY	1000	12177	23121	21025	12980	24(2)	25291	1.6200	1,0284	1 8552
21 RF OWERL VY	1,3801	12/21	13324	1.11338	1.3540	13944	13942	14534	1 427 5	14650
21189 OVASLEY, K1 21191 PENDLETON, KV	2874 13165	8527 13125	9315	2.950	9460	2752	98220	10/62	11298	11487
21/93 PERRY, KY	12962	12750	10065	13304	1 3301	11971	19015	14320	1.4715	14652
21195 PikE, KN 21197 POWELL KY	14300	14136	14152	14199	1.0335	1.4815	14861	16372	18183	16445
21199 PULASKI, KV	1972	1874	14152	14062	14241	14410	14794	19635	12919	1,2947
21301 ROBERTSON HP	11508	11012	12588	13114	12999	12296	1,0065	1.4502	13996	14073
21203 ROCKCASTLE, KY 21205 ROWAN, KY	10520	11135	11179	11295	11525	11758	11967	13512	13000	13274
21207 RUSSELL, KY	12854	1,3580	13311	13180	13005	12015	1 9035	1,3527	1.3532	14013
21202 50 011, KY	17238	105.52	19088	19388	19059	19151	19575	30.84	30401	3261
20211 SHELEY, KY 20213 SMPSON, HY	38381 14477	14052	1610	19212	19029	19296	19752	20385	30577	20871 16304
21215/SPENDER, KR	14776	16159	1947	15373	1.4559	1.9645	13360	19580	13/66	1,9763
21217 TAYLOR, HY	14206	14238	14915	14163	14638	14700	16068	16502	16796	16008
20219 TOOD, K4 20221 TRIGG, KV	14204	14575	14588	1.4534	1.4632	4590	16439	16/30	16044	15160
21223 TRIMPLE, KY	13520	13213	13557	13075	13542	13152	120322	13026	132901	1280
21225 URION, KV 21227 WORKEN, KY	17:50	173521	C3119	17132	17230	16244	190230	19000	17312	17765
21229 WORSHINGTON, ICY	13542	138863	14544	14657	1408	1.4538.	14004	15276	15258	15,257
21231 WAYNE, KY	1039	10465	10975	11154	11164	11131	11422	12096	12068	12207
21233 WEBSTER, KY 21235 WHITLEY, KY	16725	12365	16123 12528	15584 12518	16,201	2965	16050	16016	17504	18424
21237 WOLFE: KY	9567	10129	10961	10745	10582	10586	10805	11447	11734	11991

ITY PAMIE	1990	1991	1982	1983	1994	(996	196	1997	198	1986
KOD KENTUCKY KOD ADAIR, KY	25015-103	2446165	2008/79 97.005	通4月22 101572	2756.67 63.626	1454 4F	29206 R2 87 945	29/52 12	70854.35	刊(3) 所 72.702
DES ANDERSON, KY	60.005 80.720	67.6	51.25 80.172	80.984 74.294	64 CER 72 604	57.000 05.214	19.000	71.006	75.308	77.300 56.580
KODY BALLARD, KY	45.458	40.630	31.64	41.282	43,530	45.072	40.288	47.288	62.552	50.48
KNO BARREN, VY KITI SATH, KY	248.17 26.696	248,182	260.090	273.467 30.584	286.597	296.34 92.911	36.46	34.692	308.572 38.526	334.405
019 BELL, KM	218,713	204.624	205,762	211,012	219.236	220,738	223.011	229.069	225.006	229.786
015 BOONE, KY 017 BON/REON, KY	889706 107.096 517.306	899,689 105,615	961278	1039.466	1111.151	172,539	1204.664	1315.495	1421316	1475.44
019/80YD, KY	517.306- 227.704	218-622	5321984 2221.213	149.766 202.00	563(0)	127.762	586.577	588,962	603,385	6118E
10 TO 1	14 0.00	13.961	14,061	15,385	310.08	\$0.50	10.777	17.110	17.950	10.017
US BREATHIT, KP US BREATHIT, KP US BRECHNEIDGE, KY	83.983 84.73	70 E 52.345	51.000 53.542	85,735	10.723 65.801	01:000 X0:500	04.407 72.738	(法,751) 78.482	20.125	101.001
029 BUILTT, KA 034 BUILER, KV	136571	139.191 27.2	151.432	163,132 29,545	「常調」	142548 31.972	165,725	121.24	34.975	212.4E 95.512
1931 ALOWELL KY	00.084	96.058	16.429	96.825	104.195	105.402	109.258	111.061	114,362	146,876
636 CALLOWAY, KV 037 CAMPBELL, KV	239,7%8	415,8	247.878 444.539	259.415 454.500	273.638 435.402	280.731 459.16E	287.248 510.188	296,682	308.011	318,043
GRI CARLISLE, KY GII CARROLL, KY	16138	15,959	15.739 79.004	15 41 F	17.076	17.862 201.95	17.771 10.075	10.352	10 600	10.343
DEI CARTER, KY	117.80	110.727	127.464	154.455	140.040	185.027	142,055	155.504	152,321	121.04
des CASEIY, KY Gez CHRISTIAN, KY	40.188	30.478 347.624	41.400	43.52	44.882	45.85E	45.825	47.520 425.687	432,521	50/815 441/211
049 CLAFIN, KY	215,508	298.04	212.582	222/057 96:797	232.247	239.506 109.548	243,705	263,655	204 100.094	2/0:171
051 CLAY, KV 063 CLAY, KV	99.427 35.412	35,339	91.383 36.999	38.629	40.24	41,096	104.61 41.761	42.525	43,997	112.986
055 CRITTENDER, KY 057 CUMEERLAND, KY	25.506	25.308 29.766	25.372 30.619	28.67	. 27 74 33.514	38.38	38745 医期1	29.362 35.469	30.586	31.138 35.661
059 DAVESS, KY	486.932	61.162	673.85	712,254	737.084	792.06	770148	782,442	82,264	804,688
061 COMONSON, KY	16.33	16 162	15/061	17,4%	10.750	19.150	2015	201901	21.672 12.625	21,901
ODS INSTILL KY.	47.444	41.4	41327	45707	45,804	47,18	47.874	46.311	55,131	51,211
067 PAPETTE, KX 069 FLEMING, KY	No. 104	59.931	58.578	61 69	54.960	E7.001	80.919	NUME	73.58	75.044
071 FLOYD, KY 079 FRANKUN, KY	205332 205332 306606	216.128 318.075	215545 328.151	28066		34150 389.452	344.45	245,980 382,873	159,206 396,623	259.605 408.318
	20.004	55.069 12,789	55,432	54.27	54,322	54.68Z	69.425	98,915	6Q.013	80,796
077 GALLADM, H7 G79 GARBARD, K7	12,485- 29,964	-29.017	12.943 29.601	13,751 31:15	14.8%	15.654 34.714	16.369 36.122	17-538 37-766	10.174 20.541	12.901 40.515
001-SRANT, K7 003-SRAVES, KY	210.293	214 556	225.1182	129.165 205.155	139,000	147 106	154.28 282.913	100,805	170,228	252.007
BE GRAYSON, KY	36.161	107.1001	112.68	110.198	110.14	118021	122.6%	125182	152.75	135.3
087 GREEN, KY 089 OREENUP, KY	27.514	21.91	27 653 104.667	28.79	20.877 (12.980	30.522	31.641 117.375	32,024 118,765	25.258 121.688	123.921
	17.380 725.037	15.594	16,769	17.67 757.314	19.712 807 845	19.08	20.904 808.948	21.448 845.197	22.315 802.789	22.715 842.306
095 HARIJAN, KY	164,632	157.301	157,718	163.084	100 67	02.354	171.67	174,218	(疗效)	179.937
097 HARRISON, KY	B1,459 夜349		84.016 57.791	87.536 60.930	月7日 日初	4.085 布121	109 17 394	10.445 10.146	旧殿	105 908
101 HENDERSON, KY	305783	321,741	330.745	344 287	375.667	305.465	374,107	701545	390.871	359,778
105 HICKMAN, KY	11.134	10:52	11.091	11.509	11.48	1150	11.725	T1:50%	12.121	12:300
107 HOPIONS, KY 109 JACKSON, KY	316.229	307 587	312788 18180	325343	338.872	344 SE2 21 SEC	380.612 22.17	32.307	385.164 23.304	29.611
111 LEFFERSON NV	SECONDE	5844.777	575 199	5961.161	1045.614	6,60,56	5434.5	(680)(00)	-6708.76	6016-538
113 JESSAWINE, KY 115 JOHNSON, KY	181.557	185.287 175.31B	199,602	211.538 200.171	223.669 207.9	291 934 213,012	244 967 219.169	252.68 220.646	264.037 226.672	2/5/06
117 MENTOR, KY USHNOTT, KY	894.109 43.47	808 112 42 506		847,866 45,164	384.5 47.485	902,868	822-179 49 918	430,969	971,351 101,494	994,579 81,721
121 MARE KY	147,345	142,055	145.025	100,000	100111	163.911	100.051	170-136	177.28	102.425
US LARUE, KY US LAUREL, KY	26,023	31.272 285.5%	26.107	37.407	39.241	40/25*	11.790 302.585	12.782	11.171	45.670
127 LANNENCE, KT 129 LEE, KS	80.807 27.444	81.810 29.527	67.083 27.984	80.765 25.619	74.162	76.884 50.868	78,912	731818 31.664	63.401 39.07	15.132 39.60
TH LEGUE KP	30.78	31 322	39.645	34 B/B	20.406	36.511	37.011	37.563	30,885	39.702
1331,ETCHER, KY 1351,EWIS, KY	104.161	100 334 25,925	101.253 27.578	104.516	109.069	110.686	112.051	113,096	114.719	117.152
137 LINCOLN, NY	54.372	52.904	54,392	57,572	80.6	841	54.65	66.296	69,387	70,996
139 LIVINGETON: HY	21.638	21.166	21 826	22:581	23,769	124.28	127.502	25,198	3,46	(予)(A)
USILIZON, KY USIMOCRACIEN, KY	28.508 108.802	15.549 685.279	41.257 717.85	44.218	40.091 185.918	45.000 795.815	50.011	10.362 Rul 807	54 152 342,950	55.005 574.551
THE MICCREARY, KI	40.411	41.191	44.000	45.425	45.823	50.53B	51.488	52.172	63 SU	55,431
140 MOLEAN, KY	18.691	17.76	17.501 413.36	18.355 430.762	463.534	475714	20.13 ² 490.000	20,298	58174	21.8 582-165
153 MAGBEERIN KY	52,379	37.837 58.772	40.144	42.00	44.166	45.294	46,336,74,822	47.047	49,539 78,135	43,480 79,611
165 MARDON, KO 167 MARSHALL, KY	64 B 145.690	142,408	65.367 145.666	66.117 154.03	10,545	72.321 168.309	173,742	75.829	186.387	180,461
159 WARTER KY	55.884 145.753 73.500	52765	14.726 (12.01)	55 373 (62 228)	(97.04) 168.529	100,005	45,929 171.5	- 99.7	500 (46.0)	5121 104.175
NO MEADE, KY NE MERETER, KY	75.505	17 701	25.145	74,525	00,506	04.005	85,732	89.065	300-3554	13,000
IL MERCER MY	02-50	85,710	10.107	HD SKC	11.422	11.912 05.710	12 373 100.428	110.098	13.538	1000 000
121 MCALOVE MY	40.000	48.247	22.286		24.601	25.275	25.906 35.897	25542	17.818 56.871	
173 MONTOOMERY, KY 175 MORSAN, KY	151.079	147.405	152.912	180.852	170,199	175.294	175,096	169,029	-190.14	194.815
175 WORSAN, KY 177 WUHLENBERG, KY	41.453	167,758	38,415	37.819 178.851	39,721	40,468	41,512	42.38° 201.217	43.854	45.180 213.845
179 MELSON, KY 381 MICHOLAS, KY	163,977	185.075	175.644	155.84	198,643	26.671	26.80 16.88	224.8471	196,663	243800
303 (0H0), KF	97.354	102.671	10,901	363.38	101.33	15.48E	105.256	15.105 100.010	16,623	115.000
	MADES -	145.373 35.777	140,020	100.007	174.005	152.598	(107.245) 401917	100.303	210.001	219.162 45.183
105 OLDHAN, KY 187 OLDHAN, KY 188 OKRELY, K1 191 PERCLETON, KY 193 PERPY, KY 196 PIKE, KY 197 POWELL, KY 198 PENASKI KY	1.235	1.238		7.962	6.452	3.583	8.911	18.87	\$7.188	32.363
191 PENDLETON, KY 193 PERRY, KY	34.872	34.146 221.19	7545 16134 235.304	£ 500 243 252	39.332 355.178	40,788 290,405	4255 265.115	43.475 267.920	44.319 345.569	45.518
195 PIKE, KN	482,726	492,133	614 868	634,184	667,773	689.523	677.66	(15/6,964)	689,443	606.313
199 PULASH, KV	360.600	37.7 372.549 2.051	40.681 366.475 2.385	405.807	44.752 432.516 2.506	45.894 449.25	和法	48,838	E1.827 494.361	ES.167 507 342 2.77
197 POWELL KY 197 POWELL KY 199 PULASH, KY 201 POEBRISON KY 201 POEKRASTLE, KY 196 POWEN, KY	F21	2051	13,075	2.375	17 787	2971	2,609	2.5	2,724	2.77
	1.00.0001	TRUCKSA.	152 558	152.575	165.025	171.305	170.741	101.201	101.362	103.570
and the second s	1.40-4001		85.879 185.512		20.140	35.087 221.983	100.354	101.157	103,975 281,251	105.050
211 SHELEY, KY	142.081	140.668	147.0EB	15 43	185.063	172,608	179778	138-11	106.90	219.361
200 BCOTT, KY 211 SHELEY, KY 213 SAUPSON, KY 215 SPENCER, KY 217 TAYLOR, KY 217 TAYLOR, KY	118.181	122 147	131 E77 15.059	136,731 16,062	144 517 17.806	149.004	152-173 30.687	155.000	162,540	34.748
217 TAYLOR, HY	151.108	152,536	182.71B	171.014	190.68	195,726	189(829)	164 127	200.409	204,996
219 TODD, K4 221 TRIGG, KV	36.13	24 845 36 829	- 35日2 美行1	表成1 第164	27,979 40,750	26244 42521	28.944 44.773	29.36 46.236	30.326 49.942	30,744 80,068
223 TRIMELE, HY	0.261	10.145	11.626	12,556	15.378	13.991	14.977	15.27 00.628	10,45	12.010
221 TREES AV 221 TREES AV 221 TREMELE, KY 221 JANDA, KY 221 JANSH KY 222 WARHEN, KY 222 WARHEN, KY	760707	730,238	251.464	807.151	\$53.588	667.050	912.042	505.305	173.105	1002-000
		34.825 67.990	57.321 72.948	38.305 73.96	40.400 29.916	41.014 (0.05)	42.934 86.065	45.305 86.216	45.301	40.15 50.664
231 WARNE KY 233 WEESTER, KY 235 WHITLEY, KY		- A.F. 104.1	42,162	51,804	59.475	BD.087	0.61573	62.425	64130	低性
28 MHILEY, KY	270.236	271,153	289.961	305,609	320.48	306 331	339.300	343.292 24.315	397.447 25.204	364.5

ILLICKS OF 1992 D.D.L.LAR! NTV_MAME	1980	1991	1992	1995		1995	196	1907	1986	1906
1000 KENTLOKY 1001 ADAR, KY			4160.73		46345 (6)			6063875 106742	111.226	
TOT ALLEN, KY TOES ANDERSON, KY	06.157	140 MICH 58 331	107.325	110,775	152,705	120.922	131.2	135.725	140.105	144.000
100° (SALLARD, XY	14:229	85-628	32.400	807.8	36,425	35.125	100-501	111.348	100.408	112-05
1009 BARREN, KV 1011 BADH, KV	383.556	388,015	418.845 45.661	439,817 46,072	468513 46.399	474.168 49.978	467.548 44.355	512.677 51.862	54.994	522.152 56.576
1019 BELL, KY 1015 BOOME, KY	240,822	231,289	294.473 1261.578	298,532 1380,192	236.59 1462.936	240,480	236.447	243.996 1855.089	268.408	254.050
H017 BOORBON, KY	169.607	174.97 BBI 982	(88.541 963.278	100.08	189,904	192.171 957.411	202,156	219,878	205.062	211,248
NOT BOYD, KY	106.001	302.454	522.028	: 363.901	305.75	305.371	374.92	404.300	125.621	177 782
NU25 BRACKEN, KY NU25 BREATHIT, KP	35.653	37 500 01 382	39.317	35.301 115.27E	34.317 115.448	51,900 01,408	35.718	41.00L 82.220	20.000 57.348	30.94
21027 30HEUP/00P/00/00, P.T.	71,799	72,580	61.273 200.134	78.011	76.306 244.518	72.188	75,388 261,234	85.348 290.247	254.596	87.300 304.72
2029 BUILLIT, KY 2021 BUILLER, KV	74,863 83,109	72968	73.584 88.177	76.791 83.807	163.073 99.681	EB 344 97 54	95.088 94.994	67.363 97.365	84.776	16.13 99.66
21033 CALOWELL, KV 21036 CALLOWAY, KV	304 029	322.44	342,108	347.571	367.636	386 548	407.097	415,000	436.196	449.560
2032 CAMPBELL, KY 21670 CARUSLE, KY	29.42	588.87 25.361	- 606.96 27 17 1	670.938 27.41	29.343	66.95	201.178	75074	789.171 29.884	798.83
NUM CARROLL, KY NUM CARTER, KY	130,313	130.335	151.53	190.000	174.625	181.104	105.652	120 542	151,095	130,138
21045 CASEY, KY	76.77 1010.862	50.439	64,211	80.975	02.44	70,258 1321 (8	77.796	57,107	80.388	97.588 14,77.588
2049 CLARK, KY	39.95	285-855	1200.384	1285 ASS 290.363	300.249	310815	1352.38	380.96	364.584	315.44
2051 CLAY JAV 2053 CLAY JAV	99.145 41.949	97 354 43.69	107.621 45.902	49.091	113.684 45.791	121.963	114.14 45.626	49.66	124.536 54.275	127.94
2095 CRITTENDER, KY 2005 CUMEERLAND, KY	48.689	46.906	51,012 36,075	95.624 光位的	夏79 第10日	55.49 灭338	80.115 31.279	69.280 75.517	99,664 36,48	60,634 37,764
2039 CHVESS, KY	943,96	964.074	1001.982	1036.058	1027,391	1064.515	1087.175	1140743	120.66	1243,87
NOST COMONSCIN, KP	30.402 14.020	37 550	30.463	37.717 15.022	「気限」 作品	50.45 13.57	32 391 14 885	34,052	77.500 19.626	20.30
NOS ESTIL, KY	57.540 4660,736	52-410 455/508	E144 4600.082	57.357 4665.772	\$25,0285 -\$265,101	52.004 4042.488	ED-401 50/C-688	64.164. 5264.157	\$3,743 5515.088	71.72
2007 PAPETTE, KX 2009 FLEMING, KX 2007 FLOYD, KY	77.344 398.779	79,261	89 191 341 598	16.28 343.046	54,850 343,417	80.624 300.165	64.912 304.77	878	87.456 352.694	20.462
21073 JERAN KUNU KY	753,566	776.62	794.912	797.74	R02 383	B40,871	850 366	195.306	962,988	967 9
21075 FULTOR, KY 21077 GALLATIN, HY	71,248 21,664	71.166	B1.895 24.11	10.961 23.014	(約7%) 30,477	90.945 42.361	95.096 46.621	96,165 64,079	99,006 (93,5	108,679
NOTRIGATIBATIO, KY NOTRIGATIBATIO, KY	61,752 05,005	61,794 101/01	18:488 56:574	65.869 (19.02	54 315 \$0.325	80.544	80.786 100.097	70.406 111.315	70812	172.368
	301 221	200.028	330.718	359 124	- 545.65	345.491	305.421	303.20	362.107	320.01
21037 GREEN, KO	53,438	135.018	141.289	142.871/ 54.585	145.917 55.791	150.397 47,383	160.5MB 41.761	171.085 45.242	151.08 47.582	185,503 45,582
2089 OREENUP, KY 2091 HANCOCK, KY	368.466 166.175	338-017	345.274	295.133	2Ex 47 182-580	277 EEB 191 936	288,645	254.143 213520	305.461 219.998	311.9
21093 HARON KY	1174 352 300 993	1173.207	1258.821 275.058	1296.801 290.032	1223.57	1204.672 245.768	1252 648	1291.647 238.527	1338-590 252.818	1369/304
TUSP PROPERTY, KI	1,55,156	140.51	(42,20)	141,296	142,493	137,912	134,297	149,066	152,701	156.378
21090 HART, SY 21301 HENDERSON, KY	76.442	20102	85,973 523,154	199,963 545,151	94.95 500.54	85 (5) 571,235	· 現4版 194版9	96 507 621,764	97 768 847 548	100.980
21303 HENRY, KY 21305 HICKMAN, KY	70.92	01014 30352	56.105 37.106	1973 35.663	30.291	12:161 公司的	\$1.517 \$1.750	57.817 36.872	50.990 30.292	10.635
THE HOPPONS, MY	544 JBB 38 544	524.375 42.777	510,273	505.122 43.800	500-850 45-880	\$23,271	521,277 59,857	635.763 65.350	585.70*	580.480
21100 UACHSON RV 21111 LEFFERSON RV	11561102	11519.54	43.818 1,2067 93	12451.65	12250 65	44.68 13046.00	13226.961	13/89	86.888 14421.79	14808 A3
21113 JESSAWINE, KY 21115 JOHNSON, KY	231,774 163,725	234.378 151.48	238.087 162.96	241.72	251 666 173,746	275,852	306-21 170-241	377 355. 171 567	368.066 181.413	378,054
2117 VENTOR, KY 21 US KNOTT, KY	1237 351 91 539	1249.525			1418.302		1545.575	160394		1711.508
211213-01010, 611	150,764	152,545	170.521	177 747	8722 (市20	05.48	(79,101	103,053	194.00	199.000
21 CE1 LARUE, KY 21 CE5 LAUREEL, KY	22.385	105.012	18.977 271.538	436.371	11.007	59.000 200.528	01.05 (75.235	NUP 1994	71.758 859.227	75.88
21127 LANRENCE, K1 21129 LEE, K1	85.385 35.845	54.888 34.889	88.951 38.331	BELEAB 主切日	-02.94 37.067	20.128	74.075 37.306	78.140 30.663	77.480 41.382	42501
21131 LEBUE KOP 21133 LETCHER, KOP	50.04 188.303	.90.033 183.086	96.947 163.114	107.29	110.927	111.40	118,611 150,615	117.497	121766	125.404
21135 LEWIS, KV	53,958	56.427	57.666	66,386	64,672	55.0%E	54.397	69,949	96,622	- 58.06
21137 UNCOLN, RT 21139 LIVINGETON, KY	70.962 48.889	74,075 48,688	B4.963 43.957	65 136 51 577	67.513 51.01	85.591 63.508	股期 66141	109.061 60.11/	110,728 73,818	114.48 75.85
21141 LOGAN, KY 21142 LYCN, KY	224 307 36 72	229.080	256,085	200,000	274 596	273,961	254.402	126,102	294.079 49.526	216,968
ZTHE MICRACKEN, KY ZTHE MICREARY, KY	305.515	53,168	\$61.90* 58.816	\$72.574 64.896	1001725	1022-158	10E2 994 60 004	1027 500 73.240	1158.262	1101.582
21140 MICLEAN, KY 21161 WADISON, KY		40.696	4137	47.064 526.501	51.660	45.518	54.0EE 613815	£2.751 661.748	54.468	155 ADV
21953 MA38FFFF, KY	48.849	51.45	564 004 50 11	50.697	55,661	89.079	58,413	61.647	670.202 80.405	89.673
21165 MARDON, KO 21167 MARSHALL, KY	100.44	106.404 324.667	114,593	108.912 343.002	107.661 375.381	109,217 365,448	112,906	126.836 761.738	128312 396,242	432,075
21 169 WARTIN, KY	137.168 106.05	128,072	125.512	122,789	113745	195.05	101.189	97.68 230.397	108.76	110.085
21161 MAGQN, KY 21163 WEADE, KY	57.507	10.000	10.0D1	16.645	725,748	220 836	207,706	104.715	111.323	257.468
arives (werker eler, k/Y miner (werkerer, k/Y	153,004	15 39E 152.381	20102	20.42% 110.227	21,736	22 (86) 102 111	21.80	25.327 2113/38	24.754 202.538	25.271 251.481
21 RAI WEICALFE, K7	38,647	50.684 In 160	61.963 84.678	80.712 94.016	£1,799 90,725	50.285 51.393	80.361 66.91	65.615 54.607	12257 87.221	64.511 98.775
2173 MONTOOMERY, KY	154.45 56.45	144.981 58,231	151,851 63,384	144 % 62 67	151 045 63 98	157 676	177 21 66.869	210.805 74.878	219.2	206.315 B1.374
N177 WUHLENBERG, KY	-273,739	249.127	241,4631	294.61	246,368	260,772	246,766	254,222	26.397	274.105
H179 MELSON, KY H188 / MCH0LAS, KY	268,719 42,066	260.145	273545 45.131	40.785	102.017	314,145 35,014	304 524	344.165 41,784	360.312 42.90	310.448
NINE CHO, KY NINE OLDHAN, KY		122,704	127,137	135,550	135.230	127.387	144.117	180.100	157 944	100.072
FT REF (CEPTER) FVE	93.430	44,287	47,701	47.175	45.407	42,248	44,527	\$0,203	42,66	60.982
21189 OWISLEY, K1 21191 PENDLETON KY 21191 PEDDY KY	12.972 52.739	12.861 56.527	14.088 60.764	15344 日765	14.407 (9).46	15,800	15.802 53.964	15.588 66.590	17.808 64.907	18.014 86.671
21195 PIKE, K1	302.005	306.941 714.097	302.507 700.291	301 764 701 668	323515 711.117	312,080 745,938	307.906	322.746 721.394	395.564 795.991	345.66
1197 POWELL KY	50 HB	53,119 451,445	59.232 473.474	61.828 484.701	62.717 504.221	69,138	71.139	-74.1%	79.607	52.64 649.213
139 PULASH, KV 1301 ROBERTSON KP 1301 ROBERTSON KP	7.39	0.449	9364	10,117	9.472	510.968 7.763	8,927	10,968	\$0.184	10.49
1201 ROBERTSON, KP N203 ROCKCASTLE, KV 1205 ROWAN, KV	161.389	170,735	88.017 (72.857	174.712	71.882	71,052	72.017	75.885	204,505	210,762
NUMPROSSELL, KP	142.45	131.542	145.452	145,580	140.852	138,237	138.272	140.800 862.801	144.236	147.33
7D1 SHELEY, KY	38.821	282.151	200.041	36.26	317.66	310.690	3057%	211.5	365.385	3/5.627
AUTO SEPERATER, KY	185.587	104.554	156.984	203-554	201 315	157.004 30.914	30.674	205.957	219.017	226,775
PLODE SCIETT, KY PLITE SHELEY, KY PLITE SHELEY, KY PLITE SHEBALER, KY PLITE SHEBALER, KY PLITE TAYLOR, KY PLITE TODE, KY	238,514	235.565	256.975 Re531	263,106	290.012	249.965	253.569	255,341	263.814	299,666
		70.14 75.118	60.877	同月 19.755	65.029	91.86	69,609	91,066	92/971 10/611	94.5
2022 TRIGG AV 2023 TRIMILE, KV 2023 UNION, KV	382.600	41 ICM 271 020	31 272 268 326		27.525	24.000 210.000	27.64 214.97	25.4D1 135.61	28.75 222.06	20 387
21225 UNION, KV 21227 WARREN, KV 21229 WARREN INCOMENT	108.850 61.22	1960 24 802-648	1080.138				1283-898-	1353.321	1372.142	1414.548
212.31 MAAPNE, KP	96.007	56.765	101.482	105.511	102.148	104.681	.107.64E	117.596	117.963	12070
21233 WEBSTER, KY 21235 WHITLEY, KY	151.680 377,544	140 509 275,895	152 108	166 HZ 250 D16	127 125 399,445	149 1 292 (67	149.271 287.058	142.103	160.367 305.22	175.405
1237 WOLFE, KY	22.866	25.415	28.637	28.366 352.12	27.797 346.462	29.112	29,896	31,466	38,215 379,445	38.919

8.5 Appendix E – Traffic Volume (TVS) Estimating Procedure

No Actual Data	Functional Classification (FC) or Statewide
One Actual Count	Average (SW) Ratio of Data to Functional Classification or Statewide Average
Two or More Actual Counts	Piecewise estimate from current year to last actual data point.
	If slope from first actual data point to current year is negative, a ratio of FC or SW is used from most recent actual county to current.
	If Five or more actual data points are available an exponential fit will be used from the last actual data point to the end of the record.
	If fewer than five data points are available a ratio to FC or SW to the last actual data point will be used.
Bypass or New Road	If a bypass year or new road year is indicated, estimates will be made from the year indicated to the current year, using only data from that same period. Estimates made before the Bypass year will remain unchanged.

TVS Estimating Procedure, Historical Estimates

TVS Estimating Procedure, 20-year Estimates

No Actual Data	Same as Historical Estimates
One Through Four Data Points in the Last	Ratio of latest actual data to FC or SW twenty
Twenty Years	Year Estimate
Five or More Data points in the Last Twenty	A linear regression will be used, If the slope is
Years	negative, a ratio of latest actual to FC or SW

8.6 Appendix F – Weighted County Level Functional Class Growth Rates

County Number	County Name	Functional Class	Year	Average ADT	Weighted Average	Predicted Weighted	2000 Weighted	Weighted Analysis	Weighted Analysis
Number		01055		ADT	ADT	Average	ADT	Regression	Regression
						ADŤ	Growth	Constant	Slope
r		4	0000	20.250	24 042	00.040	Rate (%)	E04 700	205.00
5	BARREN	1	2000	32,350	31,013	29,940	1.02	-581,703	305.82
6	BATH	1	2000	18,667	18,663	18,310	2.91	-1,049,093	533.70
8	BOONE	1	2000	44,629	41,781	41,845	4.23	-3,497,897	1,769.87
10	BOYD	1	2000	18,300	17,719	17,932	2.89	-1,017,341	517.64
15	BULLITT	1	2000	56,375	58,114	59,884	2.96	-3,490,880	1,775.38
17	CALDWELL	1	2000	14,750	14,884	14,795	3.97	-1,158,736	586.77
21	CARROLL	1	2000	26,367	25,313	25,581	3.71	-1,872,601	949.09
22	CARTER	1	2000	14,325	14,753	14,956	2.61	-766,714	390.83
24	CHRISTIAN	1	2000	19,533	18,963	17,586	4.58	-1,592,153	804.87
25	CLARK	1	2000	30,050	29,597	30,137	3.25	-1,929,521	979.83
31	EDMONSON	1	2000	29,800	29,800	28,589	1.20	-659,896	344.24
37	FRANKLIN	1	2000	33,100	33,857	34,614	3.41	-2,328,591	1,181.60
39	GALLATIN	1	2000	26,067	27,072	25,950	3.52	-1,800,636	913.29
41	GRANT	1	2000	41,580	39,205	40,774	3.86	-3,104,910	1,572.84
47	HARDIN	1	2000	40,580	41,980	43,176	4.67	-3,988,367	2,015.77
50	HART	1	2000	32,525	32,667	33,385	3.20	-2,102,095	1,067.74
52	HENRY	1	2000	28,467	27,869	28,341	3.17	-1,769,629	898.98
56	JEFFERSON	1	2000	43,600	43,600	44,556	2.36	-2,056,050	1,050.30
59	KENTON	1	2000	44,700	44,700	49,075	4.22	-4,095,168	2,072.12
62	LARUE	1	2000	33,100	33,580	35,141	3.59	-2,488,705	1,261.92
63	LAUREL	1	2000	34,567	35,304	34,909	2.39	-1,636,355	835.63
70	LIVINGSTON	1	2000	25,000	24,644	25,104	4.24	-2,104,237	1,064.67
72	LYON	1	2000	19,225	18,039	18,013	4.00	-1,424,767	721.39
76	MADISON	1	2000	47,320	47,398	49,460	3.44	-3,355,894	1,702.68
79	MARSHALL	1	2000	26,567	26,368	26,532	4.40	-2,309,680	1,168.11
73	MCCRACKEN	1	2000	27,450	28,175	28,560	4.12	-2,327,278	1,177.92
87	MONTGOMERY	1	2000	19,767	20,054	20,781	3.64	-1,490,456	755.62
93	OLDHAM	1	2000	44,920	45,965	45,901	3.90	-3,538,122	1,792.01
102	ROCKCASTLE	1	2000	34,467	35,539	36,341	3.21	-2,295,497	1,165.92
103	ROWAN	1	2000	15,633	14,154	13,840	3.38	-921,796	467.82
105	SCOTT	1	2000	43,717	48,330	47,404	5.62	-5,280,799	2,664.10
106	SHELBY	1	2000	38,520	38,349	39,177	3.13	-2,411,351	1,225.26
107	SIMPSON	1	2000	35,833	36,173	35,196	0.44	-271,831	153.51
111	TRIGG	1	2000	14,500	14,668	14,682	3.94	-1,140,908	577.79
112	TRIMBLE	1	2000	26,800	26,800	27,235	3.79	-2,037,008	1,032.12
114	WARREN	1	2000	41,040	39,830	39,027	1.24	-929,382	484.20
118	WHITLEY	1	2000	30,767	30,461	30,514	2.58	-1,545,423	787.97
120	WOODFORD	1	2000	29,950	28,672	30,386	3.47	-2,080,718	1,055.55
			•	,	,	,•		.,,	.,

Functional Class 01, Weighted County Level Growth Rates

Functional Class 02, Weighted County Level Growth Rates

County Number	County Name	Functional Class	Year	Average ADT	Weighted Average ADT	Predicted Weighted Average ADT	2000 Weighted ADT Growth Rate (%)	Weighted Analysis Regression Constant	Weighted Analysis Regression Slope
1	ADAIR	2	2000	14,041	5,526	5,972	4.31	-509,055	257.51
2	ALLEN	2	2000	5,298	4,952	5,061	3.31	-330,265	167.66
3	ANDERSON	2	2000	12,752	12,644	12,329	3.13	-758,425	385.38
4	BALLARD	2	2000	5,723	5,623	5,508	2.13	-229,315	117.41
5	BARREN	2	2000	6,615	5,519	6,014	4.22	-501,094	253.55
7	BELL	2	2000	15,312	13,037	12,655	2.90	-721,667	367.16
9	BOURBON	2	2000	10,181	10,081	10,130	2.17	-429,411	219.77
10	BOYD	2	2000	11,651	11,131	11,068	0.75	-156,015	83.54
11 12	BOYLE BRACKEN	2 2	2000 2000	11,131 7,293	10,545 7,355	10,545	2.87 7.40	-595,341	302.94 541.10
12	BREATHITT	2	2000	10,353	7,692	7,311 7,701	1.95	-1,074,893 -292,146	149.92
13	BRECKINRIDGE	2	2000	5,434	4,854	4,888	2.62	-250,951	145.52
16	BUTLER	2	2000	8,492	8,732	8,611	5.21	-888,388	448.50
17	CALDWELL	2	2000	8,850	8,484	9,515	4.58	-862,894	436.20
18	CALLOWAY	2	2000	8,265	8,539	8,748	2.60	-445,577	227.16
19	CAMPBELL	2	2000	9,623	10,121	10,248	6.47	-1,316,182	663.21
20	CARLISLE	2	2000	3,325	2,927	2,950	0.39	-20,245	11.60
22	CARTER	2	2000	4,690	4,361	4,286	4.29	-363,716	184.00
23 24	CASEY CHRISTIAN	2 2	2000 2000	6,154 9,372	4,402 10,541	4,436 10,360	2.55 3.08	-221,485 -626,823	112.96 318.59
24 25	CLARK	2	2000	9,928	12,253	11,951	3.12	-734,138	373.04
26	CLAY	2	2000	5,640	6,524	7,627	5.70	-862,059	434.84
27	CLINTON	2	2000	9,579	4,224	4,308	3.07	-259,995	132.15
30	DAVIESS	2	2000	9,283	7,751	8,647	3.46	-590,519	299.58
35	FLEMING	2	2000	3,115	2,991	2,990	2.31	-135,348	69.17
36	FLOYD	2	2000	14,605	15,527	15,579	2.72	-831,499	423.54
37	FRANKLIN	2	2000	18,450	18,053	18,586	3.49	-1,277,216	647.90
38 40	FULTON GARRARD	2 2	2000 2000	5,736 11,039	4,791 10,498	4,974 10,543	4.83 2.67	-475,277 -553,425	240.13 281.98
40 42	GRAVES	2	2000	9,578	9,369	8,999	2.67	-555,425 -474,473	201.90
42 43	GRAYSON	2	2000	8,893	8,772	9,862	4.26	-830,934	420.40
45	GREENUP	2	2000	8,513	7,680	7,612	1.80	-266,349	136.98
46	HANCOCK	2	2000	9,445	9,810	9,753	3.64	-700,537	355.15
47	HARDIN	2	2000	8,857	12,100	11,826	2.66	-618,016	314.92
48	HARLAN	2	2000	7,140	6,073	6,157	1.55	-184,854	95.51
51	HENDERSON	2	2000	8,836	9,534	10,775	5.16	-1,101,878	556.33
53	HICKMAN	2	2000	4,251	4,539	4,484	4.39	-389,369	196.93
54 56	HOPKINS JEFFERSON	2	2000 2000	14,612 23,420	13,613 23,916	15,120 24,600	6.02 1.85	-1,804,955 -885,248	910.04 454.92
50	JESSAMINE	2	2000	35,267	32,796	33,504	4.21	-2,789,571	1,411.54
58	JOHNSON	2	2000	8,608	8,178	7,753	0.17	-18,645	13.20
60	KNOTT	2	2000	6,402	6,228	6,330	1.23	-148,908	77.62
61	KNOX	2	2000	17,563	16,238	16,316	3.42	-1,098,922	557.62
63	LAUREL	2	2000	8,508	7,860	8,133	2.38	-378,452	193.29
64	LAWRENCE	2	2000	8,857	8,983	8,873	1.11	-188,651	98.76
66 67	LESLIE LETCHER	2 2	2000 2000	5,090 6,432	5,065 5,956	6,160 6,305	3.53 2.12	-429,366 -260,713	217.76 133.51
68	LEWIS	2	2000	4,594	4,115	4,035	4.51	-359,578	181.81
69	LINCOLN	2	2000	11,713	10,177	9,651	4.00	-762,556	386.10
72	LYON	2	2000	8,130	8,200	9,178	5.02	-912,088	460.63
76	MADISON	2	2000	10,158	10,629	10,774	2.67	-564,847	287.81
77	MAGOFFIN	2	2000	8,109	6,523	6,120	1.40	-165,734	85.93
78	MARION	2	2000	6,770	6,252	6,198	3.03	-369,696	187.95
79 80	MARSHALL	2 2	2000 2000	7,629 7,345	7,095 7,172	7,572 7,519	3.49 0.78	-520,798	264.19
81	MARTIN MASON	2	2000	7,164	7,632	7,651	5.20	-110,025 -787,387	58.77 397.52
73	MCCRACKEN	2	2000	12,481	11,005	11,102	1.81	-389,883	200.49
74	MCCREARY	2	2000	9,539	7,873	7,944	2.90	-452,447	230.20
82	MEADE	2	2000	11,510	8,761	9,009	2.78	-492,079	250.54
84	MERCER	2	2000	13,425	13,113	12,934	2.40	-608,576	310.76
85	METCALFE	2	2000	4,535	4,528	4,839	3.82	-364,412	184.63
88 89	MORGAN MUHLENBERG	2	2000 2000	5,750 8,990	5,750 9,091	4,963	1.49 5.02	-143,158	74.06 550.62
90	NELSON	2	2000	9,483	9,383	10,973 9,876	4.75	-1,090,271 -928,281	469.08
91	NICHOLAS	2	2000	4,600	4,325	4,367	2.09	-178,185	91.28
92	OHIO	2	2000	7,723	7,356	8,025	4.50	-714,435	361.23
96	PENDLETON	2	2000	7,630	7,630	7,581	5.53	-831,329	419.45
97	PERRY	2	2000	10,268	9,477	9,517	2.37	-442,264	225.89
98	PIKE	2	2000	12,245	10,474	10,426	2.43	-497,078	253.75
99	POWELL	2	2000	11,322	10,529	10,707	2.30	-482,442	246.57
100	PULASKI	2	2000	9,631	7,542	7,652	2.35	-351,647	179.65
101 102	ROBERTSON ROCKCASTLE	2	2000 2000	3,070 8,193	3,070 7,307	2,937 7,474	1.86 3.95	-106,517 -583,308	54.73 295.39
102	RUSSELL	2	2000	6,107	4,231	4,480	2.95	-259,685	132.08
109	TAYLOR	2	2000	7,987	7,478	7,515	3.14	-465,034	236.27
110	TODD	2	2000	6,860	6,860	7,323	-4.28	634,233	-313.45
111	TRIGG	2	2000	4,439	3,752	3,869	2.22	-167,764	85.82
113	UNION	2	2000	6,801	4,918	4,959	1.18	-111,882	58.42
114	WARREN	2	2000	11,001	8,901	9,401	4.30	-798,704	404.05
115 117	WASHINGTON WEBSTER	2 2	2000 2000	5,548 13,800	5,086 14,137	5,727 14,505	3.78 10.70	-427,115 -3,089,976	216.42 1,552.24
117	WOLFE	2	2000	6,063	5,593	5,656	2.23	-246,346	126.00
120	WOODFORD	2	2000	25,557	20,181	19,163	2.10	-787,072	403.12

Functional Class 06, Weighted County Level Growth Rates

County Number	County Name	Functional Class	Year	Average ADT	Weighted Average ADT	Predicted Weighted Average ADT	2000 Weighted ADT Growth Rate (%)	Weighted Analysis Regression Constant	Weighted Analysis Regression Slope
1	ADAIR	6	2000	7,872	2,324	2,388	0.78	-34,906	18.65
2 3	ALLEN ANDERSON	6 6	2000 2000	4,875 5,783	4,594 5,252	4,569 5,167	5.04 0.59	-455,619 -55,739	230.09 30.45
4	BALLARD	6	2000	2,644	1,873	1,881	1.21	-43,564	22.72
5	BARREN	6	2000	7,298	6,362	6,344	2.27	-281,628	143.99
6 9	BATH BOURBON	6	2000 2000	2,948 3,163	2,615 3,206	2,580 3,234	2.78 2.65	-141,083 -167,989	71.83 85.61
11	BOYLE	6	2000	4,684	5,231	5,224	2.51	-256,673	130.95
14	BRECKINRIDGE	6	2000	2,491	2,484 9,501	2,501	1.91	-92,875	47.69
15 17	BULLITT CALDWELL	6 6	2000 2000	12,038 3,477	3,421	9,637 3,499	2.50 3.00	-472,503 -206,160	241.07 104.83
18	CALLOWAY	6	2000	6,238	4,926	5,025	2.59	-254,954	129.99
19 20	CAMPBELL CARLISLE	6 6	2000 2000	5,697 1,214	6,596 1,296	6,617 1,296	2.14 2.00	-276,020 -50,440	141.32 25.87
22	CARTER	6	2000	8,786	5,367	5,358	2.00	-216,480	110.92
24 25	CHRISTIAN CLARK	6	2000 2000	4,310 5,905	4,583	4,682	5.10 3.07	-473,093 -226,620	238.89 115.19
25 26	CLARK	6	2000	5,905	3,799 7,620	3,753 7,685	2.49	-226,620 -375,301	191.49
27	CLINTON	6	2000	3,626	3,740	3,659	3.70	-267,383	135.52
28	CRITTENDEN CUMBERLAND	6 6	2000 2000	6,465 5,028	3,893 3,372	3,907 3,449	1.49 2.70	-112,492 -182,854	58.20 93.15
29 30	DAVIESS	6	2000	6,945	6,937	6,956	2.62	-357,685	182.32
31 32	EDMONSON	6	2000	5,526	4,201	4,102	1.54	-122,025	63.06
32 35	ELLIOTT FLEMING	6 6	2000 2000	3,150 4,349	2,354 3,850	2,376 3,932	1.74 2.83	-80,481 -218,343	41.43 111.14
35 36 37	FLOYD	6	2000	2,090	2,090	2,224	-9.76	436,163	-216.97
37 38	FRANKLIN FULTON	6 6	2000 2000	3,902 1,916	3,558 1,170	3,639 1,214	2.60 1.80	-185,560 -42,588	94.60 21.90
39	GALLATIN	6	2000	2,367	2,304	2,323	3.77	-172,890	87.61
40	GARRARD	6	2000	3,726	2,238	2,269	2.18	-96,629	49.45
42 43	GRAVES GRAYSON	6 6	2000 2000	3,915 10,248	3,452 4,228	3,452 4,278	1.38 2.71	-91,684 -227,190	47.57 115.73
44	GREEN	6	2000	5,621	3,594	3,599	1.10	-75,670	39.63
47 48	HARDIN HARLAN	6 6	2000 2000	8,955 10,681	9,639 6,296	9,573 6,254	1.31 1.80	-241,077 -218,636	125.32 112.45
40 49	HARRISON	6	2000	5,073	4,031	3,955	2.18	-168,181	86.07
51	HENDERSON	6	2000	5,402	5,275	5,382	2.63	-277,410	141.40
52 53	HENRY HICKMAN	6 6	2000 2000	5,031 555	3,350 582	3,384 575	2.61 1.70	-173,468 -18,922	88.43 9.75
54 55	HOPKINS	6	2000	6,798	6,495	6,554	1.76	-223,634	115.09
55	JACKSON	6	2000	3,935	3,183	3,267	2.57	-164,954	84.11
56 57	JEFFERSON JESSAMINE	6 6	2000 2000	9,780 8,140	10,221 8,792	10,317 8,883	3.90 3.94	-794,421 -690,858	402.37 349.87
58 62	JOHNSON	6	2000	4,290	4,290	4,364	2.23	-190,666	97.52
62 63	LARUE LAUREL	6	2000 2000	5,350 7,407	5,317 5,659	5,327 5,519	2.55 0.77	-266,253 -79,224	135.79 42.37
65	LEE	6	2000	5,377	3,932	3,953	2.72	-211,449	107.70
66	LESLIE	6	2000	5,993	3,493	3,557	1.47	-100,907	52.23
69 70	LINCOLN LIVINGSTON	6 6	2000 2000	3,940 4,788	3,910 4,464	3,947 4,499	2.08 1.06	-160,248 -90,446	82.10 47.47
71	LOGAN	6	2000	4,975	4,809	4,819	2.56	-241,853	123.34
72 76	LYON MADISON	6 6	2000 2000	5,972 4,423	5,457 4,319	5,616 4,339	1.19 2.80	-127,811 -238,244	66.71 121.29
77	MAGOFFIN	6	2000	7,403	4,074	4,231	2.63	-218,208	111.22
79	MARSHALL	6	2000	4,678	4,029	4,023	1.26	-97,331	50.68
80 81	MARTIN MASON	6	2000 2000	5,603 5,440	5,580 5,381	5,998 5,374	0.60 1.18	-66,386 -121,170	36.19 63.27
74	MCCREARY	6	2000	1,218	1,186	1,077	-1.76	39,055	-18.99
75 82	MCLEAN MEADE	6 6	2000 2000	6,249 8,550	5,907 6,804	5,942 7,134	1.84 3.25	-212,478 -456,637	109.21 231.89
83	MENIFEE	6	2000	3,939	3,207	3,252	3.07	-196,119	99.69
84	MERCER	6	2000	2,888	2,884	2,856	1.89	-104,940	53.90
85 87	METCALFE MONTGOMERY	6 6	2000 2000	3,438 6,136	3,311 5,767	3,313 5,702	1.73 2.94	-111,087 -329,080	57.20 167.39
88	MORGAN	6	2000	4,853	2,775	2,771	1.56	-83,540	43.16
89 90	MUHLENBERG NELSON	6 6	2000 2000	6,657 6,211	4,891 6,751	4,907 7,019	1.57 4.04	-149,399 -559,848	77.15 283.43
93	OLDHAM	6	2000	10,634	8,137	8,145	2.42	-385,389	196.77
94 95	OWEN	6	2000	4,517	8,137 2,737	2,676	3.14	-385,389 -165,307 -29,968	83.99
95 96	OWSLEY PENDLETON	6 6	2000 2000	1,143 6,771	1,286 6,090	1,270 6,116	1.23 2.57	-29,968 -308,702	15.62 157.41
99	POWELL	6	2000	3,005	2,879	2,753	4.06	-220,864	111.81
100 102	PULASKI ROCKCASTLE	6 6	2000 2000	10,868 7,600	9,771 6,495	9,877 6,524	2.90 1.77	-563,386 -224,116	286.63 115.32
102	ROWAN	6	2000	8,693	8,267	8,489	3.40	-569,381	288.94
104	RUSSELL	6	2000	10,600	10,600	10,529	1.93	-396,017	203.27
105 106	SCOTT SHELBY	6 6	2000 2000	6,628 6,749	6,546 6,409	6,612 6,532	3.89 3.55	-507,965 -457,056	257.29 231.79
107	SIMPSON	6	2000	8,993	8,466	8,500	3.28	-549,140	278.82
108	SPENCER	6	2000	8,010	8,514	8,463	4.95	-829,463	418.96
110 112	TODD TRIMBLE	6 6	2000 2000	2,975 5,286	2,358 4,309	2,559 4,277	3.56 3.31	-179,692 -278,461	91.13 141.37
113	UNION	6	2000	5,580	4,630 2,424	4,688	0.48	-40,138	22.41
114	WARREN	6	2000	3,081	2,424	2,769	-0.07	6,921	-2.08
115 116	WASHINGTON WAYNE	6 6	2000 2000	7,134 6,883	4,501 6,872	4,604 7,072	2.16 3.94	-194,708 -550,155	99.66 278.61
117	WEBSTER	6	2000	4,323	4,159	4,215	-0.07	10,365	-3.08
118 119	WHITLEY WOLFE	6 6	2000 2000	6,100 3,928	4,704 2,020	4,800 2,033	3.54 1.58	-335,013 -62,386	169.91 32.21
		ů	2000	0,020	2,020	2,000		02,000	02.21

Functional Class 07, Weighted County Level Growth Rates

County Number	County Name	Functional Class	Year	Average ADT	Weighted Average ADT	Predicted Weighted Average ADT	2000 Weighted ADT Growth Rate (%)	Weighted Analysis Regression Constant	Weighted Analysis Regression Slope
1	ADAIR ALLEN	7	2000 2000	2,639	2,028	2,074	2.65	-107,784	54.93
2 3	ANDERSON	7	2000	3,552 1,745	2,068 1,526	2,092 1,514	1.85 1.44	-75,295 -42,047	38.69 21.78
4	BALLARD BARREN	7	2000 2000	1,534 3,094	1,446 2,256	1,461 2,285	0.75 1.51	-20,366 -66,790	10.91 34.54
6	BATH	7	2000	3,340	1,957	1,991	2.19	-85,251	43.62
7	BELL BOONE	7	2000 2000	2,264 4,547	1,588 3,105	1,594 3,111	2.29 2.71	-71,563 -165,716	36.58 84.41
9	BOURBON	7	2000	1,794	1,571	1,573	2.28	-70,227	35.90
10	BOYD		2000	3,130	2,990	3,037	2.27	-134,748	68.89
11	BOYLE	7	2000	2,722	2,128	2,101	1.83	-74,846	38.47
12	BRACKEN	7	2000	1,633	1,225	1,226	1.19	-27,853	14.54
13	BREATHITT		2000	2,904	1,325	1,305	0.32	-7,006	4.16
14	BRECKINRIDGE BULLITT	7	2000 2000	1,724 7,494	1,219 5,441	1,229 5,425	1.86 1.71	-44,391 -180,541	22.81 92.98
15 16	BUTLER	7	2000	3,255	2,149	2,159	1.78	-74,792	38.48
17	CALDWELL	7	2000	1,675	1,584	1,615	1.51	-47,089	24.35
18	CALLOWAY		2000	2,238	2,177	2,188	2.25	-96,182	49.19
19	CAMPBELL	7	2000	1,295	1,235	1,222	0.51	-11,215	6.22
20	CARLISLE		2000	1,531	1,560	1,558	1.36	-40,796	21.18
21	CARROLL	7	2000	4,356	3,343	3,369	2.16	-142,269	72.82
22	CARTER	7	2000	4,785	3,026	3,064	1.97	-117,940	60.50
23	CASEY		2000	2,334	1,449	1,423	0.94	-25,309	13.37
24	CHRISTIAN	7	2000	1,880	1,905	1,933	0.88	-32,090	17.01
25	CLARK		2000	3,307	2,967	2,980	1.71	-98,736	50.86
26	CLAY	7	2000	2,467	2,018	2,035	2.60	-103,827	52.93
27	CLINTON	7 7	2000	2,932	2,017	2,021	2.25	-88,973	45.50
28	CRITTENDEN		2000	1,221	798	809	0.33	-4,532	2.67
29	CUMBERLAND	7	2000	2,702	1,193	1,222	2.64	-63,319	32.27
30	DAVIESS		2000	4,018	3,993	3,963	1.68	-129,239	66.60
31	EDMONSON	7	2000	1,177	1,259	1,281	1.71	-42,439	21.86
32	ELLIOTT	7	2000	697	592	595	0.63	-6,940	3.77
33	ESTILL	7	2000	6,448	3,420	3,401	1.28	-83,844	43.62
33 35 36	FLEMING FLOYD	7 7	2000 2000	2,746 4,745	1,960 3,361	1,965 3,206	1.54 0.44	-58,434 -25,249	30.20 14.23
37	FRANKLIN	7	2000	3,003	4,014	3,926	0.83	-60,865	32.40
38	FULTON	7	2000	3,326	1,912	1,901	0.59	-20,704	11.30
39	GALLATIN	7	2000	3,197	3,072	3,116	3.87	-237,868	120.49
40	GARRARD	7	2000	1,397	1,186	1,191	1.86	-43,052	22.12
41	GRANT		2000	3,632	3,062	3,111	2.34	-142,618	72.86
42	GRAVES	7	2000	1,900	1,842	1,838	1.73	-61,583	31.71
43 44 45	GRAYSON GREEN	7 7	2000 2000	3,737 1,939	2,271 2,287	2,306 2,315	2.29 2.59	-103,098 -117,822	52.70 60.07
45	GREENUP	7	2000	1,956	1,785	1,791	1.25	-42,875	22.33
46	HANCOCK		2000	1,605	1,384	1,373	1.77	-47,318	24.35
47	HARDIN	7	2000	2,678	2,703	2,679	1.79	-93,482	48.08
48	HARLAN	7	2000	4,436	2,473	2,565	2.19	-109,731	56.15
49	HARRISON		2000	2,217	2,249	2,251	2.66	-117,498	59.87
50	HART	7	2000	3,444	2,183	2,245	2.12	-92,870	47.56
51	HENDERSON		2000	2,524	2,518	2,543	0.61	-28,299	15.42
52	HENRY	7	2000	2,963	2.032	2.101	2.20	-90,266	46.18
53	HICKMAN	7	2000	1,398	1,192	1,185	1.14	-25,754	13.47
54	HOPKINS		2000	4,095	3,038	3,040	0.93	-53,426	28.23
55	JACKSON	7	2000	1,208	825	845	2.57	-42,609	21.73
57	JESSAMINE		2000	3,396	2,731	2,722	2.62	-139,998	71.36
58	JOHNSON	7	2000	6,358	4,043	3,958	0.48	-34,246	19.10
59	KENTON	7	2000	2,991	2,932	2,962	2.39	-138,752	70.86
60	KNOTT		2000	3,638	2,534	2,519	0.77	-36,381	19.45
61	KNOX	7	2000	2,962	2,112	2,068	2.82	-114,518	58.29
62	LARUE		2000	2,620	2,410	2,301	0.22	-7,649	4.97
63	LAUREL	7	2000	5,260	3,770	3,816	2.69	-201,440	102.63
64	LAWRENCE	7	2000	3,374	1,226	1,244	2.25	-54,786	28.01
65	LEE	7	2000	2,778	1,422	1,416	0.75	-19,853	10.63
66	LESLIE	7	2000	2,510	1,964	1,966	0.96	-35,679	18.82
67	LETCHER		2000	3,254	2,171	2,170	1.60	-67,329	34.75
68	LEWIS	7	2000	2,468	1,366	1,365	1.35	-35,441	18.40
69	LINCOLN	7	2000	2,128	1,541	1,527	2.56	-76,523	39.03
70	LIVINGSTON	7	2000	1,478	1,398	1,398	1.51	-40,689	21.04
71	LOGAN	7	2000	1,153	1,161	1,161	1.86	-42,090	21.63
72	LYON		2000	1,801	1,528	1,521	-0.53	17,529	-8.00
76	MADISON	7	2000	4,257	4,586	4,598	2.16	-194,458	99.53
77	MAGOFFIN	7	2000	2,101	1,509	1,496	1.33	-38,216	19.86
78	MARION	7	2000	1,815	1,560	1,588	2.16	-67,110	34.35
79	MARSHALL	7	2000	3,639	3,305	3,299	0.20	-9,963	6.63
80	MARTIN		2000	2,084	1,573	1,707	-1.50	52,873	-25.58
81	MASON	7	2000	1,404	1,202	1,195	1.32	-30,397	15.80
73	MCCRACKEN	7	2000	3,029	2,724	2,760	1.88	-101,053	51.91
74	MCCREARY		2000	2,369	1,529	1,555	2.38	-72,599	37.08
75	MCLEAN	7	2000	2,737	2,237	2,251	1.96	-86,104	44.18
82	MEADE		2000	3,396	3,220	3,306	2.61	-169,291	86.30
83 84	MENIFEE MERCER	7	2000	1,288	754	752	2.16 1.82	-31,709	16.23
85	METCALFE	7	2000 2000	2,120 3,456	1,786 2,276	1,795 2,278	1.53	-63,696 -67,280	32.75 34.78
86	MONROE	7	2000	3,441	1,921	1,899	0.78	-27,686	14.79
87	MONTGOMERY		2000	3,356	2,812	2,866	3.15	-177,496	90.18
88 89	MORGAN MUHLENBERG	7	2000 2000	1,811 6,128	1,921 4,064	1,966 4,083	2.77	-107,059 -128,888	54.51 66.49
90	NELSON	7	2000	3,541	2,803	2,850	3.04	-170,299	86.57
91	NICHOLAS	777	2000	4,539	2,360	2,363	3.08	-143,420	72.89
92	OHIO		2000	5,682	3,261	3,228	1.20	-73,929	38.58
93	OLDHAM	7	2000	3,560	2,881	2,868	2.77	-155,927	79.40
94	OWEN	7	2000	1,394	961	976	2.31	-44,112	22.54
95	OWSLEY	7	2000	2,904	1,450	1,446	2.33	-65,862	33.65
96	PENDLETON	7	2000	1,727	1,071	1,076	1.71	-35,776	18.43
97	PERRY	7	2000	3,171	2,462	2,456	1.63	-77,849	40.15
98 99	PIKE POWELL	7	2000 2000	3.590	2,837 3,013	2,824 3,024	-0.05 2.05	5,683 -121,009	-1.43 62.02
100	PULASKI	7	2000	5,482 2,460	2,333	2,302	1.82	-81,462	41.88
101	ROBERTSON	7	2000	1,122	743	750	1.61	-23,408	12.08
102	ROCKCASTLE	7	2000	1,754	1,788	1,821	1.93	-68,597	35.21
103	ROWAN	7	2000	3,163	2,828	2,868	2.40	-134,599	68.73
104	RUSSELL		2000	3,417	2,457	2,469	1.85	-88,655	45.56
105	SCOTT	7	2000	3,801	3,299	3,378	3.23	-215,106	109.24
106	SHELBY	7	2000	2,422	2,432	2,469	3.52	-171,202	86.84
107	SIMPSON	7	2000	2,129	2,488	2,443	3.52	-169,446	85.94
108	SPENCER	777	2000	3,077	2,567	2,539	4.12	-206,506	104.52
109	TAYLOR		2000	2,750	2,717	2,742	2.15	-115,023	58.88
110	TODD	7	2000	2,402	1,732	1,706	1.05	-34,075	17.89
111	TRIGG	7	2000	2,007	1,176	1,181	1.35	-30,759	15.97
112	TRIMBLE	7	2000	3,541	3,079	3,066	3.95	-238,879	120.97
113	UNION	7	2000	2,138	1,593	1,604	0.86	-26,069	13.84
114	WARREN	7	2000	4,562	4,140	4,182	2.25	-183,632	93.91
115	WASHINGTON	777	2000	1,360	949	959	1.60	-29,650	15.30
116	WAYNE	7	2000	1,414	1,064	1,065	2.42	-50,559	25.81
117	WEBSTER		2000	2,822	2,186	2,164	0.94	-38,658	20.41
118	WHITLEY	777	2000	3,619	2,990	3,043	2.23	-132,647	67.84
119	WOLFE		2000	1,292	1,040	1,042	2.03	-41,288	21.17
120	WOODFORD	7	2000	3,533	3,196	3,229	3.00	-190,394	96.81

Functional Class 08, Weighted County Level Growth Rates

County Number	County Name	Functional Class	Year	Average ADT	Weighted Average ADT	Predicted Weighted	2000 Weighted ADT	Weighted Analysis	Weighted Analysis Regression Slope
1	ADAIR ALLEN	8 8	2000 2000	770 969	426 673	Average ADT 431 671	Growth Rate (%) 1.06 1.32	Regression Constant -8,714 -17,073	4.57 8.87
3	ANDERSON BALLARD	8	2000 2000	784 364	676 322	673 318	1.27 0.65	-16,477 -3,826	8.57 2.07
5	BARREN	8	2000	584	594	598	1.93	-22,463	11.53
6	BATH	8	2000	543	505	508	2.10	-20,862	10.68
7	BELL	8	2000	1,050	842	860	3.11	-52,630	26.74
8	BOONE	8	2000	1,248	1,115	1,120	2.19	-47,867	24.49
9	BOURBON		2000	952	887	881	1.97	-33,834	17.36
10	BOYD	8	2000	568	537	540	-2.02	22,381	-10.92
11	BOYLE		2000	751	611	602	1.45	-16,847	8.72
12	BRACKEN	8	2000	478	451	457	3.43	-30,873	15.67
13	BREATHITT	8	2000	526	487	491	1.71	-16,318	8.40
14	BRECKINRIDGE	8	2000	549	417	417	1.31	-10,541	5.48
15	BULLITT	8	2000	1,382	1,262	1,272	3.02	-75,568	38.42
16	BUTLER		2000	468	425	423	1.34	-10,922	5.67
17	CALDWELL	8	2000	358	363	363	0.85	-5,798	3.08
18	CALLOWAY		2000	696	643	646	1.89	-23,767	12.21
19	CAMPBELL	8	2000	764	543	561	3.01	-33,263	16.91
20	CARLISLE	8	2000	271	266	262	-0.26	1,646	-0.69
21	CARROLL	8	2000	479	471	480	3.57	-33,784	17.13
22 23	CARTER CASEY	8	2000 2000	875 593	777 564	761 561	0.58 1.38	-7,995 -14,914	4.38 7.74
22 23 24 25	CHRISTIAN CLARK	8	2000 2000	588 872	572 832	569 843	1.43 1.93	-15,684 -31,667	8.13 16.25
26	CLAY	8	2000	1,121	886	877	2.33	-40,063	20.47
27	CLINTON	8	2000	797	614	618	1.39	-16,530	8.57
28	CRITTENDEN	8	2000	383	271	270	0.11	-333	0.30
29 30	CUMBERLAND DAVIESS	8	2000 2000 2000	397 744	357 684	358 689	1.95	-13,611 -28,122	6.98 14.41
31	EDMONSON	8	2000	614	602	568	2.34	-25,973	13.27
32	ELLIOTT	8	2000	390	372	378	2.52	-18,672	9.53
33 35	ESTILL FLEMING FLOYD	8 8 8	2000 2000 2000	934 667 2,857	821 547 1,714	823 555 1,723	2.26 2.50 1.38	-36,307 -27,250	18.57 13.90 23.79
36 37 38	FLOYD FRANKLIN FULTON	8 8	2000 2000 2000	2,857 889 1,050	1,714 799 396	816 401	1.38 1.40 0.34	-45,852 -21,990 -2,361	23.79 11.40 1.38
38 39 40	GALLATIN GARRARD	8	2000 2000	708 521	721 521	713 534	4.25 3.34	-59,880 -35,142	30.30 17.84
41	GRANT	8	2000	1,237	959	980	2.94	-56,639	28.81
42	GRAVES		2000	885	844	845	1.12	-18,126	9.49
43	GRAYSON	8	2000	1,138	947	956	2.52	-47,149	24.05
44	GREEN	8	2000	376	346	352	1.22	-8,199	4.28
45	GREENUP	8	2000	665	495	495	0.70	-6,441	3.47
46	HANCOCK	8	2000	684	588	584	2.46	-28,196	14.39
47	HARDIN		2000	1,598	1,366	1,357	2.97	-79,401	40.38
48 49	HARLAN	8	2000 2000	2,489 687	1,424 662	1,440 662	1.16 2.70	-31,941 -35,141	16.69 17.90
50	HART	8	2000	492	486	493	2.35	-22,679	11.59
51	HENDERSON	8	2000	576	630	640	1.64	-20,326	10.48
52	HENRY	8	2000	693	599	607	2.07	-24,451	12.53
53 54	HICKMAN HOPKINS	8	2000 2000 2000	317 1,195	243 964	243 961	-0.04	435	-0.10 10.20
55	JACKSON	8	2000	537	455	455	2.97	-26,546	13.50
56	JEFFERSON		2000	1,385	1,503	1,477	4.39	-128,071	64.77
57 58	JESSAMINE JOHNSON KENTON	8 8 8	2000 2000 2000	1,470 1,428 605	1,242 933 591	1,228 939 579	1.33 2.01 2.38	-31,507 -36,740 -26,994	16.37 18.84 13.79
59 60 61	KNOTT	8	2000 2000 2000	1,152 1,481	915 1,157	911 1,141	0.58	-20,354 -9,678 -80,333	5.29 40.74
62	LARUE	8	2000	1,092	647	658	1.15	-14,530	7.59
	LAUREL	8	2000	927	812	824	2.92	-47,248	24.04
63 64 65 66	LAWRENCE LEE LESLIE	8 8 8	2000 2000 2000	978 759 959	712 487 888	722 486 901	3.42 2.27 2.64	-48,633 -21,577 -46,700	24.68 11.03 23.80
67 68	LETCHER LEWIS	8	2000 2000	1,468 711	1,218 415	1,239 420	2.04 2.52 0.44	-40,700 -61,152 -3,292	31.20 1.86
69 70	LINCOLN	8	2000 2000	1,496 520	858 412	866 413	2.68 1.51	-45,632 -12,090	23.25 6.25
71	LOGAN	8	2000	583	576	578	1.53	-17,143	8.86
72	LYON	8	2000	547	543	529	1.00	-10,021	5.27
76	MADISON	8	2000	1,145	1,116	1,143	3.18	-71,639	36.39
70 77 78	MAGOFFIN MARION	8	2000 2000	541 991	517 807	504 790	1.50	-14,567 -14,594	7.54
79	MARSHALL	8	2000	896	871	868	0.83	-13,500	7.18
80	MARTIN		2000	1,453	1,203	1,241	0.52	-11,623	6.43
81	MASON	8	2000	530	474	493	1.30	-12,321	6.41
73	MCCRACKEN	8	2000	970	912	922	1.74	-31,259	16.09
74	MCCREARY	8	2000	1,508	905	894	1.65	-28,530	14.71
75 82	MCLEAN	8	2000 2000 2000	554 1,045	521 915	525 914	1.82	-18,550 -38,495	9.54 19.70
83	MENIFEE	8	2000	449	411	398	0.07	-130	0.26
84	MERCER		2000	463	476	479	1.73	-16,084	8.28
85	METCALFE	8	2000	622	554	560	-0.84	10,003	-4.72
86	MONROE	8	2000	799	576	576	1.01	-11,028	5.80
87	MONTGOMERY	8	2000	925	810	797	1.98	-30,778	15.79
88 89	MORGAN MUHLENBERG	8	2000 2000	376 1,872	387 1,329	385 1,326	1.95 1.31	-11,028 -30,778 -14,636 -33,404	7.51 17.36
90 91 92 93 94 95 95	NELSON NICHOLAS	8 8	2000 2000	764 465	695 406	702 409	2.97 1.28	-40,997 -10,062	20.85 5.24
92	ohio	8	2000	781	637	645	1.29	-16,019	8.33
93	Oldham	8	2000	1,695	1,515	1,493	3.97	-117,178	59.34
94	Owen	8	2000	448	430	438	2.20	-18,835	9.64
95	OWSLEY	8	2000	344	315	305	0.37	-1,953	1.13
96	PENDLETON		2000	946	830	832	2.99	-48,924	24.88
97 98 99	PERRY PIKE	8	2000 2000	1,134 1,944	1,049 1,671	1,048 1,661	1.78 0.97	-36,191 -30,495	18.62 16.08
99	POWELL	8	2000	875	635	631	2.32	-28,715	14.67
100	PULASKI	8	2000	805	689	674	1.64	-21,496	11.09
101	ROBERTSON	8	2000	218	227	228	1.22	-5,347	2.79
102	ROCKCASTLE	8	2000	987	655	660	3.10	-40,217	20.44
103	ROWAN	8	2000	853	853	878	3.07	-52,970	26.92
104	RUSSELL	8	2000	1,477	1,043	1,058	2.40	-49,725	25.39
105	SCOTT		2000	1,223	1,268	1,298	4.01	-102,657	51.98
106	SHELBY	8	2000	742	743	757	2.73	-40,621	20.69
107	SIMPSON	8	2000	630	565	576	2.13	-23,941	12.26
108	SPENCER	8	2000	678	704	684	3.75	-50,628	25.66
109 110	TAYLOR TODD	0 8 8	2000 2000	736 592	665 566	676 567	2.13 1.89	-28,106 -20,821	14.39 10.69
111	TRIGG	8	2000	604	556	553	1.09	-11,511	6.03
112	TRIMBLE	8	2000	554	435	415	-3.07	25,963	-12.77
113	UNION	8	2000	663	705	698	0.70	-9,019	4.86
114	WARREN	8	2000	1,298	1,116	1,111	2.73	-59,561	30.34
115	WASHINGTON	8	2000	940	496	505	1.98	-19,503	10.00
115 116 117	WASHINGTON WAYNE WEBSTER	8 8	2000 2000 2000	940 560 683	496 549 624	505 555 628	1.98 1.53 0.79	-19,503 -16,423 -9,257	8.49 4.94
118	WHITLEY	8	2000	1,209	1,078	1,073	2.16	-45,343	23.21
119	WOLFE	8	2000	468	345	343	0.05	11	0.17
120	WOODFORD	8	2000	836	909	910	1.21	-21,049	10.98

Functional Class 09, Weighted County Level Growth Rates

County Number	County Name	Functional Class	Year	Average ADT	Weighted Average ADT	Predicted Weighted Average ADT	2000 Weighted ADT Growth Rate (%)	Weighted Analysis	Weighted Analysis
1	ADAIR ALLEN	9	2000 2000	406 356	289 255	287 249	5.55 0.15	Regression Constant -31,611 -511	Regression Slope 15.95 0.38
3	ANDERSON	9	2000	290	282	277	5.09	-27,955	14.12
4	BALLARD	9	2000	306	288	290	0.54	-2,851	1.57
5	BARREN	9	2000	631	554	555	0.89	-9,293	4.92
6	BATH	9	2000	399	474	480	3.53	-33,433	16.96
7	BELL		2000	1,090	911	910	3.30	-59,151	30.03
8	BOONE	9	2000	854	541	543	1.19	-12,432	6.49
9	BOURBON	9	2000	367	337	334	2.66	-17,421	8.88
10	BOYD	9	2000	937	754	751	1.20	-17,288	9.02
11 12 13	BOYLE BRACKEN	9 9	2000 2000	393 199	274 210	273 206	2.15 3.97	-11,459 -16,193	5.87 8.20
14	BREATHITT	9	2000	538	280	271	1.19	-6,171	3.22
	BRECKINRIDGE	9	2000	1,719	489	494	1.22	-11,568	6.03
	BULLITT	9	2000	1,511	1,032	1,014	0.67	-12,590	6.80
15 16 17	BUTLER CALDWELL	9	2000 2000	395 127	174 133	166 134	1.39 0.03	-4,449 64	2.31 0.04
18	CALLOWAY	9	2000	520	446	453	3.09	-27,541	14.00
19	CAMPBELL	9	2000	1,600	987	990	2.34	-45,329	23.16
20	CARLISLE	9	2000	192	170	169	0.88	-2,808	1.49
21	CARROLL CARTER	9	2000 2000 2000	478	309 306	305 303	2.65 3.43	-15,871 -20,464	8.09 10.38
22 23 24 25	CASEY CHRISTIAN CLARK	9 9 9	2000 2000	553 363	378 232	381 236	2.56 0.84	-19,105 -3,717	9.74 1.98
25	CLARK	9	2000	1,390	1,011	1,010	1.01	-19,398	10.20
26	CLAY		2000	884	471	460	2.76	-24,906	12.68
27	CLINTON		2000	185	177	177	1.47	-5,040	2.61
28 29 30	CRITTENDEN CUMBERLAND	9	2000 2000	139 214	134 133	134 128	2.14 -0.91	-5,592 2,463	2.86 -1.17
30	DAVIESS	9	2000	605	533	530	2.44	-25,329	12.93
31	EDMONSON	9	2000	287	324	326	1.58	-9,940	5.13
32	ELLIOTT	9	2000	175	173	171	-1.58	5,554	-2.69
33	ESTILL	9	2000	680	345	346	1.25	-8,279	4.31
34	FAYETTE	9	2000	1,498	1,416	1,417	2.21	-61,085	31.25
33 34 35 36 37 38 38 39	FLEMING FLOYD FRANKLIN	9 9 9	2000 2000 2000	404 1,143 587	279 841 351	281 832 355	3.32 1.46 0.84	-18,388 -23,452 -5,636	9.33 12.14 3.00
38	FULTON	9	2000	457	211	208	1.07	-4,254	2.23
39	GALLATIN	9	2000	430	374	375	4.15	-30,744	15.56
40	GARRARD	9	2000	449	494	484	4.76	-45,585	23.03
41	GRANT	9	2000	671	534	523	5.63	-58,290	29.41
42	GRAVES	9	2000	426	406	410	2.48	-19,927	10.17
42 43 44	GRAYSON GREEN	9 9	2000 2000	315 648	365 373	360 374	3.73 0.35	-26,489 -2,234	13.42 1.30
45	GREENUP	9	2000	952	681	689	-0.98	14,226	-6.77
46	HANCOCK	9	2000	1,074	690	685	1.00	-13,027	6.86
47	HARDIN	9	2000	534	522	515	1.31	-12,936	6.73
48	HARLAN	9	2000	1,265	976	984	3.38	-65,494	33.24
49	HARRISON	9	2000	432	436	440	6.16	-53,785	27.11
50 51	HART HENDERSON HENRY	9 9 9	2000 2000 2000	389 393 334	300 329 316	302 336 317	1.86 0.44 1.96	-10,908 -2,601 -12,113	5.60 1.47 6.21
52 53 54 55	HICKMAN HOPKINS	9	2000 2000	331 761	249 689	251 676	2.16 3.95	-10,584 -52,716	5.42 26.70
55 56 57	JACKSON JEFFERSON JESSAMINE	9 9 9	2000 2000	408 1,820	349 1,820	344 1,820	3.94 0.55	-26,788 -18,180	13.57 10.00
58 59	JOHNSON KENTON	9 9 9	2000 2000 2000	1,809 460 476	2,044 474 476	2,091 465 473	4.90 2.30 2.92	-202,776 -20,941 -27,117	102.43 10.70 13.79
60	KNOTT	9	2000	616	613	606	6.47	-77,777	39.19
61	KNOX	9	2000	2,542	1,535	1,540	2.44	-73,682	37.61
62	LARUE	9	2000	218	200	198	0.59	-2,127	1.16
63	LAUREL	9	2000	666	625	622	3.92	-48,060	24.34
64	LAWRENCE	9	2000	764	352	349	4.13	-28,481	14.42
65 66 67	LEE LESLIE	9	2000 2000	208 481	203 451	201 455	2.48 4.62	-9,762 -41,572	4.98 21.01
68 69	LETCHER LEWIS LINCOLN	9 9 9	2000 2000 2000	822 255 841	481 246 494	484 261 495	0.19 1.18 -0.06	-1,329 -5,916 1,123	0.91 3.09 -0.31
70	LIVINGSTON	9	2000	229	195	197	2.26	-8,670	4.43
71		9	2000	310	220	221	2.14	-9,234	4.73
72	LYON	9	2000	227	218	213	2.79	-11,668	5.94
76	MADISON	9	2000	957	935	938	5.63	-104,711	52.82
77	MAGOFFIN	9	2000	496	292	291	1.42	-7,969	4.13
78	MARION	9	2000	214	229	222	2.53	-10,985	5.60
79	MARSHALL		2000	970	871	868	1.05	-17,381	9.12
80	MARTIN	9	2000	644	910	910	4.25	-76,412	38.66
81	MASON	9	2000	249	208	211	-1.11	4,902	-2.35
73	MCCRACKEN	9	2000	599	627	621	3.18	-38,852	19.74
74	MCCREARY	9	2000	518	403	401	1.93	-15,074	7.74
75	MCLEAN	9	2000	298	227	227	1.61	-7,056	3.64
82	MEADE	9	2000	393	271	274	1.61	-8,564	4.42
83	MENIFEE	9	2000	237	244	241	5.59	-26,716	13.48
84	MERCER	9	2000	516	459	445	0.10	-416	0.43
84 85 86 87 88	METCALFE MONROE	9 9	2000 2000	297 485	315 333	306 323	-0.65 4.85	4,306 -31,022	0.43 -2.00 15.67
87	MONTGOMERY	9	2000	686	313	315	2.69	-16,683	8.50
88	MORGAN	9	2000	649	374	375	2.62	-19,273	9.82
89	MUHLENBERG	9	2000	984	756	766	1.54	-22,754	11.76
89 90 91	NELSON NICHOLAS	9 9	2000 2000	434 232	674 204	675 205	2.45 2.18	-32,421 -8,723	11.76 16.55 4.46
92	OHIO	9	2000	927	407	408	1.20	-9,390	4.90
93	OLDHAM	9	2000	1,950	1,306	1,306	2.37	-60,675	30.99
94	OWEN	9	2000	423	250	261	2.45	-12,501	6.38
95 96	OWSLEY PENDLETON	9 9	2000 2000	231 418	139 396	139 396	2.45 3.55	-6,641 -27,712	6.38 3.39 14.05
92 93 94 95 96 97 98 99 99	PERRY PIKE POWELL	9 9 9	2000 2000 2000	598 1,098 730	546 808 362	548 809 365	2.93 0.70 1.94	-31,613 -10,502 -13,809	16.08 5.66 7.09
100 101 102	PULASKI ROBERTSON ROCKCASTLE	9 9	2000 2000	506 118	363 113	359 113	3.70 1.57	-26,215 -3,438	13.29 1.78
102	ROCKCASTLE	9	2000	434	288	287	2.72	-15,341	7.81
103	ROWAN	9	2000	262	255	256	2.95	-14,859	7.56
104	RUSSELL	9	2000	366	322	323	4.36	-27,819	14.07
104 105 106 107	SCOTT SHELBY	9 9	2000 2000	356 568	287 517	293 522 247	4.30 2.71 4.33 6.42	-15,569 -44,668	7.93 22.60
107	SIMPSON	9	2000	260	253	247	6.42	-31,429	15.84
108	SPENCER	9	2000	422	303	302	3.06	-18,200	9.25
109	TAYLOR	9	2000	350	329	328	2.87	-18,498	9.41
110	TODD	9	2000	411	387	385	1.54	-11,519	5.95
111	TRIGG	9	2000	312	307	306	2.76	-16,582	8.44
112	TRIMBLE	9	2000	287	221	220	-0.15	865	-0.32
113	UNION	9	2000	305	283	283	-1.98	11,485	-5.60
114	WARREN	9	2000	1,069	895	908	3.01	-53,746	27.33
115	WASHINGTON	9	2000	225	220	220	2.92	-12,645	6.43
116	WAYNE		2000	735	679	684	1.86	-24,800	12.74
117	WEBSTER	9	2000	486	454	458	1.78	-15,834	8.15
118	WHITLEY	9	2000	543	450	428	-0.87	7,842	-3.71
119	WOLFE	9	2000	488	315	304	6.17	-37,183	18.74
120	WOODFORD	9	2000	1,202	1,076	1,097	4.94	-107,416	54.26

Functional Class 11, Weighted County Level Growth Rates

County Number	County Name	Functional Class	Year	Average ADT	Weighted Average ADT	Predicted Weighted Average ADT	2000 Weighted ADT Growth Rate (%)	Weighted Analysis Regression Constant	Weighted Analysis Regression Slope
8	BOONE	11	2000	101,025	91,184	92,811	4.77 `´	-8,761,835	4,427.32
15	BULLITT	11	2000	79,700	80,608	79,601	3.08	-4,829,833	2,454.72
19	CAMPBELL	11	2000	90,767	86,507	85,496	1.81	-3,003,789	1,544.64
24	CHRISTIAN	11	2000	25,300	25,300	24,657	4.52	-2,203,914	1,114.29
25	CLARK	11	2000	41,000	41,000	42,278	3.35	-2,788,025	1,415.15
34	FAYETTE	11	2000	54,338	50,595	51,108	2.96	-2,972,068	1,511.59
47	HARDIN	11	2000	47,050	47,947	49,964	4.19	-4,136,218	2,093.09
56	JEFFERSON	11	2000	94,464	84,301	85,913	2.70	-4,545,856	2,315.88
59	KENTON	11	2000	125,864	122,309	124,337	3.16	-7,725,200	3,924.77
63	LAUREL	11	2000	35,550	35,996	37,562	3.25	-2,404,105	1,220.83
76	MADISON	11	2000	44,000	44,143	44,763	2.77	-2,431,458	1,238.11
73	MCCRACKEN	11	2000	34,400	34,896	35,050	3.96	-2,741,632	1,388.34
105	SCOTT	11	2000	42,100	42,100	43,765	4.25	-3,678,659	1,861.21
114	WARREN	11	2000	44,500	44,500	42,620	2.24	-1,864,047	953.33
118	WHITLEY	11	2000	34,600	34,600	38,131	3.52	-2,646,718	1,342.42

County Number	County Name	Functional Class	Year	Average ADT	Weighted Average ADT	Predicted Weighted Average ADT	2000 Weighted ADT Growth Rate (%)	Weighted Analysis Regression Constant	Weighted Analysis Regression Slope
5	BARREN	12	2000	6,920	6,920	7,173	3.46	-488,706	247.94
19	CAMPBELL	12	2000	48,800	48,800	40,049	1.23	-941,769	490.91
24	CHRISTIAN	12	2000	14,967	14,475	15,262	3.03	-910,037	462.65
30	DAVIESS	12	2000	18,814	18,985	19,281	3.23	-1,225,230	622.26
34	FAYETTE	12	2000	63,689	63,439	62,987	3.00	-3,714,172	1,888.58
42	GRAVES	12	2000	15,033	14,854	14,762	3.75	-1,092,305	553.53
47	HARDIN	12	2000	20,850	18,953	19,212	2.29	-861,889	440.55
51	HENDERSON	12	2000	25,300	29,168	28,934	1.98	-1,119,609	574.27
54	HOPKINS	12	2000	19,633	17,702	19,629	1.72	-656,786	338.21
56	JEFFERSON	12	2000	33,700	34,371	34,332	3.79	-2,570,527	1,302.43
90	NELSON	12	2000	9,590	9,590	10,237	4.89	-991,096	500.67
100	PULASKI	12	2000	10,400	10,400	9,824	-0.28	64,854	-27.52
114	WARREN	12	2000	11,740	11,727	11,639	4.45	-1,023,873	517.76

Functional Class 12, Weighted County Level Growth Rates

|--|

County Number	County Name	Functional Class	Year	Average ADT	Weighted Average ADT	Predicted Weighted Average	2000 Weighted ADT Growth	Weighted Analysis Regression	Weighted Analysis Regression
						ADT	Rate (%)	Constant	Slope
3	ANDERSON	14	2000	16,200	16,288	16,643	3.28	-1,075,374	546.01
5	BARREN	14	2000	15,311	14,842	14,982	2.64	-775,480	395.23
7	BELL	14	2000	26,225	25,829	25,347	2.30	-1,141,584	583.47
9	BOURBON	14	2000	8,743	11,190	11,017	2.60	-561,676	286.35
10	BOYD	14	2000	21,286	22,140	22,133	1.04	-436,878	229.51
11	BOYLE	14	2000	14,009	15,409	15,383	3.35	-1,014,994	515.19
15	BULLITT	14	2000	19,200	19,263	18,643	3.42	-1,257,863	638.25
18	CALLOWAY	14	2000	17,117	16,700	16,929	2.18	-722,641	369.78
19	CAMPBELL	14	2000	15,586	18,268	18,257	1.92	-684,121	351.19
24	CHRISTIAN	14	2000	17,047	15,593	15,179	2.50	-743,882	379.53
25	CLARK	14	2000	19,600	19,161	18,978	2.94	-1,095,349	557.16
30	DAVIESS	14	2000	14,713	17,404	17,478	1.06	-351,399	184.44
34	FAYETTE	14	2000	29,879	30,586	30,699	1.36	-806,341	418.52
37	FRANKLIN	14	2000	23,122	21,885	22,264	2.78	-1,215,079	618.67
42	GRAVES	14	2000	9,434	9,502	9,534	0.33	-53,072	31.30
45	GREENUP	14	2000	20,988	19,536	19,705	1.63	-621,287	320.50
47	HARDIN	14	2000	27,838	26,739	27,183	1.33	-695,839	361.51
49	HARRISON	14	2000	10,355	11,166	11,433	1.05	-229,184	120.31
51	HENDERSON	14	2000	26,767	21,672	21,717	1.28	-535,710	278.71
54	HOPKINS	14	2000	13,924	12,678	13,179	1.57	-399,445	206.31
56	JEFFERSON	14	2000	23,989	26,009	26,103	1.11	-553,342	289.72
57	JESSAMINE	14	2000	22,200	23,297	22,927	3.18	-1,435,306	729.12
59	KENTON	14	2000	12,060	16,083	15,586	-0.19	73,969	-29.19
61	KNOX	14	2000	26,700	25,692	26,189	4.55	-2,358,619	1,192.40
63	LAUREL	14	2000	20,000	17,812	17,761	2.89	-1,010,210	513.99
71	LOGAN	14	2000	8,785	8,522	8,502	2.07	-342,806	175.65
76	MADISON	14	2000	17,310	16,195	16,578	1.78	-574,858	295.72
78	MARION	14	2000	12,600	13,260	13,169	2.40	-618,715	315.94
81	MASON	14	2000	14,229	12,299	12,458	0.88	-207,246	109.85
73	MCCRACKEN	14	2000	16,207	16,705	17,021	0.29	-81,620	49.32
82	MEADE	14	2000	14,390	13,483	13,693	2.42	-649,709	331.70
84	MERCER	14	2000	17,818	18,196	18,403	2.26	-814,605	416.50
87	MONTGOMERY	14	2000	18,050	16,382	16,387	3.74	-1,209,550	612.97
90	NELSON	14	2000	14,942	13,877	13,903	2.13	-578,248	296.08
97	PERRY	14	2000	18,986	17,998	17,981	2.49	-878,856	448.42
98	PIKE	14	2000	27,722	27,045	27,180	2.72	-1,454,061	740.62
100	PULASKI	14	2000	24,020	22,375	22,436	0.73	-304,639	163.54
100	ROWAN	14	2000	19,691	19,800	19,782	2.16	-835,686	427.73
105	SCOTT	14	2000	12,313	10,790	11,123	3.93	-864,073	437.60
105	SHELBY	14	2000	18,985	17,520	17,623	3.30	-1,146,838	582.23
100	TAYLOR	14	2000	17,991	16,023	16,063	2.42	-761,565	388.81
109	WARREN	14	2000	19,581	23,631	23,764	2.42	-1,055,135	539.45
114	WAYNE	14	2000	10,455	10,484	10,667	5.41	-1,143,788	577.23
120	WOODFORD	14	2000	23,075	23,337	22,965	0.70	-297,666	160.32
120		14	2000	20,010	20,007	22,505	0.70	-201,000	100.02

County Number	County Name	Functional Class	Year	Average ADT	Weighted Average ADT	Predicted Weighted Average ADT	2000 Weighted ADT Growth Rate (%)	Weighted Analysis Regression Constant	Weighted Analysis Regression Slope
3	ANDERSON	16	2000	9,165	9,286	9,240	1.42	-252,669	130.95
5	BARREN	16	2000	7,412	7,471	5,240 7,570	2.04	-301,604	154.59
7	BELL	16	2000	8,489	8,900	8,840	0.94	-157,100	82.97
8	BOONE	16	2000	18,570	15,637	15,432	2.46	-744,188	379.81
9	BOURBON	16	2000	7,635	7,103	7,154	1.81	-251,954	129.55
10	BOYD	16	2000	8,835	7,982	8,040	0.78	-116,874	62.46
11	BOYLE	16	2000	6,769	5,858	5,743	1.75	-195,554	100.65
15	BULLITT	16	2000	13,071	9,584	9,668	2.72	-516,114	262.89
17	CALDWELL	16	2000	6,181	6,338	6,503	3.15	-403,818	205.16
18	CALLOWAY	16	2000	9,334	8,914	9,042	1.90	-334,340	171.69
19	CAMPBELL	16	2000	5,982	4,724	4,718	0.78	-68,552	36.63
24	CHRISTIAN	16	2000	8,688	8,054	7,993	1.06	-162,006	85.00
25	CLARK	16	2000	10,669	10,928	11,114	2.24	-487,860	249.49
30	DAVIESS	16	2000	8,279	8,341	8,233	0.88	-136,429	72.33
34	FAYETTE	16	2000	13,683	12,263	12,304	2.78	-670,573	341.44
37	FRANKLIN	16	2000	9,922	10,934	10,991	0.74	-150,711	80.85
42	GRAVES	16	2000	3,933	4,347	4,460	1.10	-93,867	49.16
45	GREENUP	16	2000	8,720	9,217	9,075	2.06	-364,828	186.95
47	HARDIN	16	2000	11,560	10,588	10,658	2.94	-616,727	313.69
49	HARRISON	16	2000	5,310	5,179	5,218	1.62	-163,732	84.48
51	HENDERSON	16	2000	8,952	7,589	7,577	1.60	-234,276	120.93
54	HOPKINS	16	2000	12,781	11,727	11,656	1.39	-313,179	162.42
56	JEFFERSON	16	2000	15,342	14,929	14,900	1.26	-359,924	187.41
57	JESSAMINE	16	2000	12,065	11,712	11,912	3.48	-816,220	414.07
59	KENTON	16	2000	13,466	11,799	11,562	1.02	-224,627	118.09
61	KNOX	16	2000	8,920	8,469	8,375	0.26	-34,547	21.46
63	LAUREL LOGAN	16 16	2000 2000	10,274	9,859 5 859	9,837 5 018	0.75 2.44	-137,652	73.74 144.26
71 76	MADISON	16	2000	7,170 8,822	5,858 8,365	5,918 8,529	2.44	-282,594 -335,541	144.26
78	MARION	16	2000	5,458	5,526	5,298	-0.12	17,716	-6.21
81	MASON	16	2000	5,160	3,715	3,785	-0.12	22,487	-9.35
73	MCCRACKEN	16	2000	7,155	7,201	7,277	0.83	-113,706	60.49
82	MEADE	16	2000	3,780	2,342	2,485	2.07	-100,288	51.39
84	MERCER	16	2000	4,641	4,362	4,394	1.73	-147,802	76.10
87	MONTGOMERY	16	2000	7,078	6,769	6,870	2.47	-332,060	169.47
90	NELSON	16	2000	9,309	11,124	11,256	3.82	-849,323	430.29
93	OLDHAM	16	2000	11,492	10,073	9,988	3.11	-610,549	310.27
97	PERRY	16	2000	8,043	7,165	7,304	1.22	-171,603	89.45
98	PIKE	16	2000	9,558	7,067	7,033	-0.61	92,904	-42.94
100	PULASKI	16	2000	6,885	6,730	6,813	1.02	-132,727	69.77
103	ROWAN	16	2000	7,290	7,770	7,975	2.49	-388,882	198.43
105	SCOTT	16	2000	11,228	9,099	9,077	1.07	-184,560	96.82
106	SHELBY	16	2000	8,590	4,542	4,974	-1.78	182,482	-88.75
107	SIMPSON	16	2000	6,367	6,292	6,230	0.47	-51,855	29.04
109	TAYLOR	16	2000	8,371	7,672	7,636	1.24	-181,101	94.37
114	WARREN	16	2000	11,580	11,934	11,955	2.24	-522,966	267.46
116	WAYNE	16	2000	12,137	12,464	12,335	1.74	-416,440	214.39
118	WHITLEY	16	2000	10,569	10,710	10,792	2.05	-432,090	221.44
120	WOODFORD	16	2000	9,474	9,621	9,535	1.27	-231,922	120.73

Functional Class 16, Weighted County Level Growth Rates

County Number	County Name	Functional Class	Year	Average ADT	Weighted Average ADT	Predicted Weighted Average ADT	2000 Weighted ADT Growth Rate (%)	Weighted Analysis Regression Constant	Weighted Analysis Regression Slope
3	ANDERSON	17	2000	5,554	5,390	5,585	2.47	-269,787	137.69
5	BARREN	17	2000	2,812	2,452	2,451	-0.53	28,668	-13.11
7	BELL	17	2000	3,674	3,590	3,599	2.57	-181,194	92.40
8	BOONE	17	2000	11,763	10,801	10,920	4.38	-946,178	478.55
9	BOURBON	17	2000	2,331	2,450	2,457	1.59	-75,696	39.08
10	BOYD	17	2000	4,199	3,905	3,879	1.64	-123,603	63.74
11	BOYLE	17	2000	3,783	3,351	3,477	1.06	-69,897	36.69
15	BULLITT	17	2000	5,066	5,583	5,611	3.11	-343,097	174.35
17	CALDWELL	17	2000	1,986	1,696	1,660	-0.48	17,493	-7.92
18	CALLOWAY	17	2000	3,508	3,783	3,875	1.94	-146,541	75.21
19	CAMPBELL	17	2000	6,989	5,340	5,325	1.23	-125,710	65.52
24	CHRISTIAN	17	2000	3,842	4,534	4,597	1.81	-161,761	83.18
25	CLARK	17	2000	2,680	2,897	2,947	1.40	-79,304	41.13
30 24	DAVIESS FAYETTE	17 17	2000 2000	4,046	3,958	3,922	1.67 2.06	-127,055 -159,187	65.49 81.58
34 37	FRANKLIN	17	2000	4,992 3,507	3,980 3,960	3,969 3,960	2.06	-159,167 -172,622	88.29
37	FULTON	17	2000	469	3,900 493	3,900 491	-0.33	3,699	-1.60
42	GRAVES	17	2000	3,047	3,235	3,208	0.81	-48,671	25.94
45	GREENUP	17	2000	4,653	4,402	4,394	1.66	-141,402	72.90
47	HARDIN	17	2000	4,586	4,493	4,599	2.16	-193,857	99.23
49	HARRISON	17	2000	3,295	3,201	3,197	1.34	-82,419	42.81
51	HENDERSON	17	2000	2,907	3,082	3,140	2.02	-123,869	63.50
54	HOPKINS	17	2000	3,921	4,011	3,993	0.37	-25,864	14.93
56	JEFFERSON	17	2000	7,014	6,417	6,380	1.77	-219,351	112.87
57	JESSAMINE	17	2000	3,047	3,115	3,123	2.44	-149,427	76.27
59	KENTON	17	2000	5,738	4,920	4,905	2.03	-194,236	99.57
61	KNOX	17	2000	1,978	1,521	1,517	2.45	-72,915	37.22
63	LAUREL	17	2000	2,365	2,755	2,737	1.31	-68,743	35.74
71	LOGAN	17	2000	1,579	1,995	2,014	-3.96	161,473	-79.73
76	MADISON	17	2000	6,440	6,142	6,072	1.49	-175,292	90.68
78	MARION	17	2000	2,333	2,272	2,199	0.60	-24,318	13.26
81	MASON	17	2000	2,391	2,356	2,329	2.07	-94,227	48.28
73 82	MCCRACKEN MEADE	17 17	2000 2000	4,558 5,367	4,014 7,041	4,035 7,825	2.25 -1.76	-177,413 283,352	90.72 -137.76
84	MERCER	17	2000	4,223	4,029	4,131	2.84	-230,352	117.12
87	MONTGOMERY	17	2000	2,045	4,029	1,720	0.04	-230, 102 473	0.62
90	NELSON	17	2000	2,215	2,290	2,297	2.93	-132,227	67.26
93	OLDHAM	17	2000	3,050	2,742	2,729	2.74	-146,589	74.66
97	PERRY	17	2000	4,800	5,438	5,781	4.86	-556,475	281.13
98	PIKE	17	2000	3,612	2,954	2,913	2.38	-135,944	69.43
100	PULASKI	17	2000	6,387	6,877	7,041	2.94	-407,656	207.35
103	ROWAN	17	2000	3,717	2,857	2,803	0.66	-33,915	18.36
105	SCOTT	17	2000	2,405	2,678	2,636	0.45	-21,095	11.87
106	SHELBY	17	2000	3,728	3,067	3,056	2.16	-128,724	65.89
107	SIMPSON	17	2000	2,896	3,566	3,585	1.44	-99,852	51.72
109	TAYLOR	17	2000	3,761	3,480	3,483	-0.02	4,539	-0.53
114	WARREN	17	2000	4,859	5,170	5,382	1.44	-149,529	77.46
116	WAYNE	17	2000	1,174	1,180	1,146	-7.94	183,121	-90.99
118	WHITLEY	17	2000	3,273	2,253	2,256	0.87	-37,008	19.63
120	WOODFORD	17	2000	4,494	4,771	4,838	3.01	-286,865	145.85

Functional Class 17, Weighted County Level Growth Rates

Functional C	Class 19, W	eighted County	/ Level Growth Rates

County Number	County Name	Functional Class	Year	Average ADT	Weighted Average ADT	Predicted Weighted Average ADT	2000 Weighted ADT Growth Rate (%)	Weighted Analysis Regression Constant	Weighted Analysis Regression Slope
5	BARREN	19	2000	906	906	902	-5.03	91,646	-45.37
5 7	BELL	19	2000	1,713	1,572	1,654	-5.03	-167,379	-43.37 84.52
8	BOONE	19	2000	2,411	4,277	4,272	6.55	-555,250	279.76
9	BOURBON	19	2000	1,096	4,277	4,272	3.71	-333,230 -81,388	41.25
9 10	BOYD	19	2000		2,631	2,617	0.59	-28,197	15.41
10	BOYLE	19	2000	1,990 745	622	2,617	0.59 4.27	-20,197 -50,723	25.66
			2000		4,790				105.50
15	BULLITT	19		4,790		4,633	2.28	-206,367	
16	BUTLER	19	2000	1,320	1,320	1,320	0.76	-18,680	10.00
17 19	CALDWELL CAMPBELL	19	2000 2000	1,097	829	841 1,226	1.18	-19,032	9.94 53.91
		19		1,062	1,146		4.40	-106,591	
21 24	CARROLL CHRISTIAN	19	2000 2000	2,850	2,850	2,844	2.92	-163,156	83.00
		19		1,687	2,746	2,780	5.02	-276,263	139.52
25	CLARK	19	2000	1,142	1,679	1,641	2.07	-66,459	34.05
26	CLAY	19	2000	1,255	1,255	1,259	1.59	-38,808	20.03
27	CLINTON	19	2000	426	426	426	-2.61	22,682	-11.13
30	DAVIESS	19	2000	1,744	2,092	2,064	2.82	-114,334	58.20
33	ESTILL	19	2000	848	848	849	2.58	-43,018	21.93
34	FAYETTE	19	2000	2,110	1,546	1,549	2.68	-81,532	41.54
37	FRANKLIN	19	2000	680	815	785	6.86	-106,887	53.84
38	FULTON	19	2000	1,255	1,186	1,186	1.20	-27,336	14.26
40	GARRARD	19	2000	1,885	2,002	1,976	-5.28	210,658	-104.34
41	GRANT	19	2000	2,615	3,095	3,365	12.09	-810,182	406.77
42	GRAVES	19	2000	390	469	461	-0.81	7,922	-3.73
43	GRAYSON	19	2000	526	375	390	3.63	-27,933	14.16
44	GREEN	19	2000	1,360	1,286	1,249	0.27	-5,471	3.36
45	GREENUP	19	2000	602	1,491	1,487	1.44	-41,475	21.48
47	HARDIN	19	2000	2,560	1,356	1,541	0.19	-4,289	2.92
48	HARLAN	19	2000	143	143	142	-6.84	19,508	-9.68
49	HARRISON	19	2000	1,447	1,073	1,066	2.70	-56,422	28.74
51	HENDERSON	19	2000	1,146	1,146	1,135	3.91	-87,635	44.38
52	HENRY	19	2000	1,260	1,260	1,258	-1.19	31,258	-15.00
54	HOPKINS	19	2000	4,370	5,167	5,189	2.32	-235,155	120.17
56	JEFFERSON	19	2000	1,126	1,723	1,722	1.54	-51,362	26.54
57	JESSAMINE	19	2000	1,783	1,470	1,482	2.78	-80,985	41.23
59	KENTON	19	2000	1,510	1,743	1,743	4.40	-151,673	76.71
61	KNOX	19	2000	808	1,183	1,180	5.55	-129,764	65.47
63	LAUREL	19	2000	1,078	1,209	1,227	2.60	-62,516	31.87
69	LINCOLN	19	2000	782	782	781	0.69	-9,977	5.38
71	LOGAN	19	2000	551	551	559	0.85	-8,974	4.77
76	MADISON	19	2000	969	884	881	4.57	-79,659	40.27
81	MASON	19	2000	878	1,273	1,275	4.64	-117,067	59.17
73	MCCRACKEN	19	2000	900	1,291	1,300	4.34	-111,613	56.46
74	MCCREARY	19	2000	194	194	204	0.17	-496	0.35
84	MERCER	19	2000	765	803	798	3.02	-47,396	24.10
87	MONTGOMERY	19	2000	1,578	2,841	2,848	2.30	-128,291	65.57
89	MUHLENBERG	19	2000	703	644	641	3.06	-38,588	19.61
90	NELSON	19	2000	425	522	505	-0.40	4,525	-2.01
97	PERRY	19	2000	486	712	688	-0.79	11,568	-5.44
98	PIKE	19	2000	2,866	1,647	1,657	-0.92	32,024	-15.18
100	PULASKI	19	2000	3,234	3,399	3,367	4.43	-295,204	149.29
103	ROWAN	19	2000	693	709	696	2.52	-34,426	17.56
105	SCOTT	19	2000	1,819	2,893	2,822	3.80	-211,387	107.10
107	SIMPSON	19	2000	621	564	554	4.78	-52,411	26.48
109	TAYLOR	19	2000	433	667	658	3.11	-40,300	20.48
114	WARREN	19	2000	1,275	1,878	1,843	6.18	-225,737	113.79
118	WHITLEY	19	2000	861	837	830	2.22	-36,087	18.46
120	WOODFORD	19	2000	180	180	197	-8.04	31,864	-15.83

8.7 Appendix G – Unweighted County Level Functional Class Growth Rates

County Number	County Name	Function al Class	Year	Average ADT	Predicted 2000 ADT	2000 Growth (%)	Regression Slope	Regression Constant
5	BARREN	1	2000	32,350	31,714	1.65	522.58	-1,013,437.42
6	BATH	1	2000	18,667	18,502	3.04	562.02	-1,105,537.98
8	BOONE	1	2000	44,629	45,495	4.27	1,944.24	-3,842,990.04
10	BOYD	1	2000	18,300	18,931	2.92	552.42	-1,085,917.58
15	BULLITT	1	2000	56,375	58,916	3.54	2,083.13	-4,107,346.87
17	CALDWELL	1	2000	14,750	14,659	3.97	581.39	-1,148,128.61
21	CARROLL	1	2000	26,367	26,459	3.93	1,038.99	-2,051,521.01
22	CARTER	1	2000	14,325	14,475	2.42	350.45	-686,434.55
24	CHRISTIAN	1	2000	19,533	19,119	4.61	880.95	-1,742,780.38
25	CLARK	1	2000	30,050	30,617	3.39	1,039.39	-2,048,170.61
31	EDMONSON	1	2000	29,800	28,589	1.20	344.24	-659,895.76
37	FRANKLIN	1	2000	33,100	34,072	3.34	1,139.39	-2,244,715.61
39	GALLATIN	1	2000	26,067	25,423	3.48	885.86	-1,746,294.14
41	GRANT	1	2000	41,580	44,192	4.53	2,001.70	-3,959,202.30
47	HARDIN	1	2000	40,580	42,410	4.35	1,845.24	-3,648,074.76
50	HART	1	2000	32,525	33,379	3.21	1,072.58	-2,111,772.42
52	HENRY	1	2000	28,467	28,705	2.92	839.60	-1,650,487.07
56	JEFFERSON	1	2000	43,600	44,556	2.36	1,050.30	-2,056,049.70
59	KENTON	1	2000	44,700	49,075	4.22	2,072.12	-4,095,167.88
62	LARUE	1	2000	33,100	34,635	3.49	1,208.79	-2,382,941.21
63	LAUREL	1	2000	34,567	34,161	2.11	721.62	-1,409,071.72
70	LIVINGSTON	1	2000	25,000	25,452	4.45	1,131.52	-2,237,578.48
72	LYON	1	2000	19,225	19,155	4.03	771.02	-1,522,874.98
76	MADISON	1	2000	47,320	49,120	3.32	1,631.03	-3,212,940.97
79	MARSHALL	1	2000	26,567	26,808	4.78	1,281.01	-2,535,212.32
73	MCCRACKEN	1	2000	27,450	27,705	4.07	1,128.79	-2,229,871.21
87	MONTGOMERY	1	2000	19,767	20,478	3.72	762.42	-1,504,370.91
93	OLDHAM	1	2000	44,920	45,122	3.62	1,631.48	-3,217,847.52
102	ROCKCASTLE	1	2000	34,467	35,145	3.05	1,070.71	-2,106,269.29
103	ROWAN	1	2000	15,633	15,255	4.05	617.23	-1,219,209.43
105	SCOTT	1	2000	43,717	43,178	4.98	2,148.73	-4,254,276.61
106	SHELBY	1	2000	38,520	39,532	3.10	1,227.03	-2,414,528.97
107	SIMPSON	1	2000	35,833	35,587	1.39	493.84	-952,089.49
111	TRIGG	1	2000	14,500	14,553	3.92	570.94	-1,127,326.06
112	TRIMBLE	1	2000	26,800	27,235	3.79	1,032.12	-2,037,007.88
114	WARREN	1	2000	41,040	40,368	1.45	586.67	-1,132,965.33
118	WHITLEY	1	2000	30,767	31,125	2.80	870.71	-1,710,289.29
120	WOODFORD	1	2000	29,950	30,655	3.88	1,188.79	-2,346,921.21

Functional Class 01, Unweighted County Level Growth Rates

|--|

County Number	County Name	Functional Class	Year	Average ADT	Predicted 2000 ADT	2000 Growth (%)	Regression Slope	Regression Constant
1	ADAIR	2	2000	14,041	14,295	2.15	307.22	-600,146.64
2	ALLEN	2	2000	5,298	5,378	3.25	174.77	-344,152.73
3	ANDERSON	2	2000	12,752	12,617	3.14	395.80	-778,983.00
4	BALLARD	2	2000	5,723	5,674	1.56	88.61	-171,544.92
5	BARREN	2	2000	6,615	7,108	4.79	340.18	-673,255.82
7	BELL	2	2000	15,312	15,098	3.24	488.99	-962,876.44
9	BOURBON	2	2000	10,181	10,298	2.21	227.76	-445,217.39
10	BOYD	2	2000	11,651	11,570	0.62	71.68	-131,793.32
11	BOYLE	2	2000	11,131	11,183	2.85	318.43	-625,677.97
12	BRACKEN	2	2000	7,293	7,251	7.55	547.35	-1,087,455.98
13 14	BREATHITT BRECKINRIDGE	2	2000 2000	10,353 5,434	10,407 5,475	2.12 3.17	221.06 173.55	-431,706.32 -341,615.74
14	BUTLER	2	2000	8,492	8,325	5.09	423.49	-838,664.77
17	CALDWELL	2	2000	8,850	10,120	5.15	521.01	-1,031,899.99
18	CALLOWAY	2	2000	8,265	8,535	2.49	212.81	-417,083.01
19	CAMPBELL	2	2000	9,623	9,648	6.78	653.72	-1,297,796.22
20	CARLISLE	2	2000	3,325	3,327	-0.54	-18.04	39,411.34
22	CARTER	2	2000	4,690	4,561	5.19	236.70	-468,833.30
23	CASEY	2	2000	6,154	6,171	2.38	146.66	-287,147.69
24	CHRISTIAN	2	2000	9,372	9,415	3.59	338.08	-666,746.59
25	CLARK	2	2000	9,928	9,543	3.71	354.15	-698,760.52
26	CLAY	2	2000	5,640	6,594	4.35	286.71	-566,820.63
27	CLINTON	2	2000	9,579	9,650	3.09	298.63	-587,610.44
30	DAVIESS	2	2000	9,283	9,701	2.64	256.40	-503,107.26
35 36	FLEMING	2	2000	3,115	3,080	2.74	84.24	-165,404.76
30 37	FLOYD FRANKLIN	2 2	2000 2000	14,605 18,450	14,645 18,983	2.68 3.42	391.81 648.45	-768,972.14 -1,277,926.55
38	FULTON	2	2000	5,736	5,865	4.76	279.19	-552,513.81
40	GARRARD	2	2000	11,039	11,114	2.57	286.11	-561,105.89
40	GRAVES	2	2000	9,578	9,341	2.51	234.72	-460,098.53
43	GRAYSON	2	2000	8,893	9,943	4.33	430.16	-850,380.34
45	GREENUP	2	2000	8,513	8,505	1.50	127.63	-246,747.37
46	HANCOCK	2	2000	9,445	9,400	3.04	285.34	-561,285.27
47	HARDIN	2	2000	8,857	8,882	2.90	257.19	-505,496.45
48	HARLAN	2	2000	7,140	7,319	2.51	183.75	-360,177.55
51	HENDERSON	2	2000	8,836	9,678	4.33	419.17	-828,656.26
53	HICKMAN	2	2000	4,251	4,256	1.99	84.78	-165,311.81
54	HOPKINS	2	2000	14,612	15,658	6.46	1,012.29	-2,008,927.57
56	JEFFERSON	2	2000	23,420	23,813	2.16	514.55	-1,005,277.45
57	JESSAMINE	2	2000	35,267	35,533	4.29	1,523.94	-3,012,346.06
58 60	JOHNSON	2	2000 2000	8,608	8,319	1.00	82.80	-157,271.70
61	KNOTT KNOX	2	2000	6,402 17,563	6,605 17,552	1.14 3.31	75.28 580.18	-143,961.05 -1,142,809.21
63	LAUREL	2	2000	8,508	8,677	2.52	218.82	-428,959.52
64	LAWRENCE	2	2000	8,857	8,709	0.78	68.21	-127,714.95
66	LESLIE	2	2000	5,090	6,170	3.59	221.33	-436,496.67
67	LETCHER	2	2000	6,432	6,645	1.50	99.38	-192,108.88
68	LEWIS	2	2000	4,594	4,420	5.15	227.67	-450,916.20
69	LINCOLN	2	2000	11,713	11,249	4.09	459.69	-908,124.89
72	LYON	2	2000	8,130	9,117	4.93	449.82	-890,519.18
76	MADISON	2	2000	10,158	10,226	2.41	246.72	-483,208.62
77	MAGOFFIN	2	2000	8,109	7,943	1.56	123.73	-239,524.07
78	MARION	2	2000	6,770	6,723	2.75	184.65	-362,586.15
79 80	MARSHALL	2	2000	7,629	7,784	1.39 0.63	108.23	-208,682.31
81	MARTIN MASON	2	2000 2000	7,345 7,164	7,686 7,158	5.24	48.51 374.92	-89,331.89 -742,684.88
73	MCCRACKEN	2	2000	12,481	12,610	0.84	106.32	-200,028.35
74	MCCREARY	2	2000	9,539	9,713	3.13	304.32	-598,930.60
82	MEADE	2	2000	11,510	11,792	2.47	290.95	-570,107.38
84	MERCER	2	2000	13,425	13,206	2.40	316.70	-620,187.64
85	METCALFE	2	2000	4,535	4,886	3.75	183.18	-361,477.82
88	MORGAN	2	2000	5,750	4,963	1.49	74.06	-143,157.94
89	MUHLENBERG	2	2000	8,990	10,955	4.97	544.36	-1,077,772.30
90	NELSON	2	2000	9,483	9,825	4.27	419.67	-829,508.83
91	NICHOLAS	2	2000	4,600	4,642	2.03	94.28	-183,912.29
92 96	OHIO PENDLETON	2	2000	7,723	8,292	4.64	384.73	-761,162.94
96 97	PERRY	2 2	2000 2000	7,630 10,268	7,581 10,496	5.53 2.40	419.45 251.58	-831,328.55 -492,664.42
98	PIKE	2	2000	12,245	12,229	2.40	289.68	-567,134.34
90 99	POWELL	2	2000	11,322	11,108	2.37	271.73	-532,358.67
100	PULASKI	2	2000	9,631	9,740	2.43	208.70	-407,664.78
101	ROBERTSON	2	2000	3,070	2,937	1.86	54.73	-106,517.27
102	ROCKCASTLE	2	2000	8,193	8,405	3.47	291.45	-574,487.13
104	RUSSELL	2	2000	6,107	6,134	2.16	132.50	-258,875.22
109	TAYLOR	2	2000	7,987	8,026	3.01	241.98	-475,925.22
110	TODD	2	2000	6,860	7,323	-4.28	-313.45	634,232.55
111	TRIGG	2	2000	4,439	4,605	3.03	139.34	-274,072.93
113	UNION	2	2000	6,801	6,869	1.37	93.87	-180,869.50
114	WARREN	2	2000	11,001	11,278	2.81	317.22	-623,159.67
115	WASHINGTON	2	2000	5,548	6,032	3.87	233.18	-460,334.63
117 119	WEBSTER	2	2000	13,800	14,225	9.15	1,301.61	-2,588,989.29
119 120	WOLFE WOODFORD	2	2000 2000	6,063 25,557	6,176 24,951	2.41 1.67	148.96 416.63	-291,743.37 -808,313.37
120		2	2000	23,337	24,001	1.07	410.05	-000,010.07

Functional Class 06, Unweighted County Level Growth Rates

	<u>F</u>		lass 06,	-		vel Growth R		
County	County Namo	Functional	Voor	Average	Predicted	2000 Growth	Regression	Regression
Number	County Name	Class	Year	ADT	2000 ADT	(%)	Slope	Constant
1	ADAIR	6	2000	7,872	7,905	1.66	130.88	-253,859.56
2	ALLEN	6	2000	4,875	4,845	5.41	262.08	-519,306.92
3	ANDERSON	6	2000	5,783	5,612	0.07	4.08	-2,549.25
4	BALLARD	6	2000	2,644	2,666	0.93	24.70	-46,740.10
5	BARREN	6	2000	7,298	7,143	2.31	164.84	-322,535.62
6	BATH	6	2000	2,948	2,883	2.23	64.41	-125,935.09
9 11	BOURBON BOYLE	6 6	2000 2000	3,163 4,684	3,180 4,684	2.56 2.23	81.34 104.59	-159,490.33 -204,497.41
14	BRECKINRIDGE	6	2000	2,491	2,511	1.94	48.78	-95,055.72
15	BULLITT	6	2000	12,038	12,089	2.65	320.94	-629,789.56
17	CALDWELL	6	2000	3,477	3,567	3.13	111.68	-219,786.32
18	CALLOWAY	6	2000	6,238	6,342	2.66	168.58	-330,809.09
19	CAMPBELL	6	2000	5,697	5,724	2.37	135.93	-266,137.50
20 22	CARLISLE	6 6	2000	1,214	1,215	1.95 1.46	23.69 127.10	-46,161.03
22	CARTER CHRISTIAN	6	2000 2000	8,786 4,310	8,712 4,444	4.93	218.91	-245,497.36 -433,373.76
25	CLARK	6	2000	5,905	5,815	3.71	215.79	-425,761.21
26	CLAY	6	2000	11,241	11,278	1.75	197.25	-383,215.18
27	CLINTON	6	2000	3,626	3,550	3.84	136.27	-268,983.33
28	CRITTENDEN	6	2000	6,465	6,404	1.73	110.47	-214,542.96
29 30	CUMBERLAND	6 6	2000	5,028	5,073	0.49	24.69	-44,314.53
30 31	DAVIESS EDMONSON	6	2000 2000	6,945 5,526	6,945 5,281	2.32 2.27	160.94 119.84	-314,942.06 -234,400.41
32	ELLIOTT	6	2000	3,150	3,202	1.96	62.74	-122,267.58
35	FLEMING	6	2000	4,349	4,433	2.97	131.45	-258,476.16
36	FLOYD	6	2000	2,090	2,224	-9.76	-216.97	436,163.03
37	FRANKLIN	6	2000	3,902	4,009	2.45	98.14	-192,278.55
38	FULTON	6 6	2000	1,916	1,976	1.64	32.36	-62,747.88
39 40	GALLATIN GARRARD	6	2000 2000	2,367 3,726	2,365 3,688	3.22 0.93	76.26 34.42	-150,160.40 -65,158.70
40	GRAVES	6	2000	3,915	3,923	1.36	53.54	-103,158.13
43	GRAYSON	6	2000	10,248	10,478	3.10	324.88	-639,291.82
44	GREEN	6	2000	5,621	5,654	1.27	71.89	-138,127.51
47	HARDIN	6	2000	8,955	8,905	0.54	48.48	-88,064.52
48	HARLAN	6	2000	10,681	10,721	2.50	268.48	-526,234.70
49 51	HARRISON HENDERSON	6 6	2000 2000	5,073 5,402	5,012 5,518	1.84 2.49	92.24 137.59	-179,473.16 -269,667.84
52	HENRY	6	2000	5,031	5,079	2.49	146.24	-287,393.26
53	HICKMAN	6	2000	555	547	1.62	8.86	-17,176.50
54	HOPKINS	6	2000	6,798	6,858	1.24	85.25	-163,639.15
55	JACKSON	6	2000	3,935	4,038	2.83	114.46	-224,889.59
56	JEFFERSON	6	2000	9,780	9,741	4.38	426.76	-843,774.24
57	JESSAMINE	6	2000	8,140	8,201	4.38	358.82 97.52	-709,447.84
58 62	JOHNSON LARUE	6 6	2000 2000	4,290 5,350	4,364 5,382	2.23 1.75	97.52 94.39	-190,666.48 -183,406.01
63	LAUREL	6	2000	7,407	7,257	0.66	47.72	-88,177.28
65	LEE	6	2000	5,377	5,356	2.16	115.75	-226,149.08
66	LESLIE	6	2000	5,993	6,170	1.32	81.72	-157,274.11
69	LINCOLN	6	2000	3,940	3,965	2.08	82.51	-161,045.49
70	LIVINGSTON	6	2000	4,788	4,823	0.87	41.76	-78,706.71
71 72	LOGAN LYON	6 6	2000 2000	4,975 5,972	4,995 6,132	2.00 1.02	99.84 62.71	-194,684.16 -119,278.39
76	MADISON	6	2000	4,423	4,449	3.11	138.56	-272,678.44
77	MAGOFFIN	6	2000	7,403	7,572	2.22	167.88	-328,185.76
79	MARSHALL	6	2000	4,678	4,675	0.51	23.70	-42,718.97
80	MARTIN	6	2000	5,603	6,000	0.89	53.13	-100,262.20
81 74	MASON	6 6	2000 2000	5,440	5,422	1.56 -1.32	84.70	-163,972.30
75	MCCREARY MCLEAN	6	2000	1,218 6,249	1,114 6,201	1.28	-14.68 79.14	30,465.57 -152,072.03
82	MEADE	6	2000	8,550	9,008	3.61	325.12	-641,222.08
83	MENIFEE	6	2000	3,939	3,982	2.91	115.94	-227,897.06
84	MERCER	6	2000	2,888	2,848	1.73	49.37	-95,895.83
85	METCALFE	6	2000	3,438	3,444	1.41	48.71	-93,969.96
87 88	MONTGOMERY MORGAN	6 6	2000 2000	6,136 4,853	6,078 4,885	3.01 1.96	182.67 95.65	-359,271.97 -186,408.92
00 89	MUHLENBERG	6	2000	4,055 6,657	4,000 6,717	1.90	95.05 94.90	-183,082.80
90	NELSON	6	2000	6,211	6,402	3.41	218.29	-430,174.09
93	OLDHAM	6	2000	10,634	10,587	2.59	273.84	-537,085.24
94	OWEN	6	2000	4,517	4,486	2.12	95.28	-186,078.26
95	OWSLEY DENDLETON	6	2000	1,143	1,125	1.07	12.07	-23,011.90
96 99	PENDLETON POWELL	6 6	2000 2000	6,771 3,005	6,817 2,929	2.69 4.31	183.16 126.18	-359,511.98 -249,434.82
100	PULASKI	6	2000	10,868	10,958	3.02	330.71	-650,465.79
102	ROCKCASTLE	6	2000	7,600	7,722	2.14	165.00	-322,287.42
103	ROWAN	6	2000	8,693	8,843	2.96	261.36	-513,884.14
104	RUSSELL	6	2000	10,600	10,529	1.93	203.27	-396,016.73
105	SCOTT	6	2000	6,628	6,664	3.90	259.87	-513,068.93
106 107	SHELBY SIMPSON	6 6	2000 2000	6,749 8,993	6,868 9,052	3.62 3.30	248.48 299.13	-490,100.63 -589,210.20
107	SPENCER	6	2000	8,993 8,010	9,052 7,989	3.30 4.48	299.13 357.55	-589,210.20 -707,110.16
110	TODD	6	2000	2,975	3,189	3.49	111.36	-219,533.58
112	TRIMBLE	6	2000	5,286	5,250	3.24	169.92	-334,581.93
113	UNION	6	2000	5,580	5,646	0.35	19.94	-34,239.47
114	WARREN	6	2000	3,081	3,278	0.72	23.55	-43,816.85
115	WASHINGTON	6	2000	7,134	7,179	2.01	144.35	-281,526.47
116 117	WAYNE WEBSTER	6 6	2000 2000	6,883 4,323	7,030 4,363	3.72 -0.49	261.54 -21.55	-516,040.46 47,470.90
118	WHITLEY	6	2000	6,100	6,206	3.92	243.41	-480,616.30
119	WOLFE	6	2000	3,928	3,858	0.84	32.52	-61,179.70

Functional Class 07, Unweighted County Level Growth Rates

County Number	County Name	Functional Class	Year	Average ADT	Predicted 2000 ADT	2000 Growth (%)	Regression Slope	Regression Constant
2	ADAIR ALLEN	7	2000 2000	2,639 3,552	2,695 3,567	1.97 1.16	52.98 41.33	-103,263.11 -79,090.79
3	ANDERSON	7	2000	1,745	1,734	1.47	25.57	-49,415.33
4 5	BALLARD BARREN	7 7	2000 2000	1,534 3,094	1,548 3,127	0.91 1.62	14.16 50.66	-26,774.22 -98,191.49
6	BATH	7	2000	3,340	3,404	2.49	84.86	-166,309.61
7 8	BELL BOONE	7 7	2000 2000	2,264 4,547	2,279 4,615	2.59 2.92	59.13 134.98	-115,985.68 -265,339.16
9	BOURBON	7	2000	1,794	1,828	2.66	48.68	-95,542.08
10 11	BOYD BOYLE	7 7	2000 2000	3,130 2,722	3,185 2,749	2.16 2.23	68.96 61.44	-134,741.79 -120,134.90
12	BRACKEN	7	2000	1,633	1,638	1.36	22.24	-42,849.01
13 14	BREATHITT BRECKINRIDGE	7 7	2000 2000	2,904 1,724	2,850 1,718	-0.33 1.90	-9.29 32.58	21,421.59 -63,443.23
15	BULLITT	7	2000	7,494	7,414	1.56	115.65	-03,443.23
16	BUTLER	7 7	2000	3,255 1,675	3,289	2.00	65.89	-128,489.17
17 18	CALDWELL CALLOWAY	7	2000 2000	2,238	1,696 2,247	1.35 1.98	22.89 44.39	-44,076.61 -86,525.44
19	CAMPBELL	7	2000	1,295	1,265	0.22	2.78	-4,304.27
20 21	CARLISLE CARROLL	7 7	2000 2000	1,531 4,356	1,528 4,351	0.96 1.50	14.66 65.06	-27,793.02 -125,774.50
22	CARTER	7	2000	4,785	4,840	1.67	80.76	-156,681.74
23 24	CASEY CHRISTIAN	7 7	2000 2000	2,334 1,880	2,273 1,923	0.39 0.97	8.77 18.70	-15,263.48 -35,475.09
25	CLARK	7	2000	3,307	3,325	1.72	57.30	-111,277.60
26 27	CLAY CLINTON	7 7	2000 2000	2,467 2,932	2,483 2,950	2.33 1.91	57.92 56.33	-113,350.96 -109,703.84
28	CRITTENDEN	7	2000	1,221	1,240	0.23	2.83	-4,420.22
29 30	CUMBERLAND DAVIESS	7 7	2000 2000	2,702 4,018	2,750 3,997	2.08 1.86	57.28 74.18	-111,802.50 -144,357.86
31	EDMONSON	7	2000	1,177	1,208	1.60	19.34	-37,462.10
32 33	ELLIOTT ESTILL	7 7	2000 2000	697 6,448	701 6.410	0.75 1.26	5.23 81.05	-9,751.77 -155.693.32
35	FLEMING	7	2000	2,746	2,760	1.13	31.16	-59,564.58
36 37	FLOYD FRANKLIN	7 7	2000 2000	4,745 3,003	4,573 2,942	1.05 1.13	48.24 33.28	-91,908.90 -63,623.65
38	FULTON	7	2000	3,326	3,308	0.33	10.93	-18,548.35
39 40	GALLATIN GARRARD	7 7	2000 2000	3,197 1,397	3,193 1,386	3.42 1.22	109.28 16.96	-215,359.52 -32,526.94
41	GRANT	7	2000	3,632	3,669	2.82	103.63	-203,584.28
42 43	GRAVES GRAYSON	7 7	2000 2000	1,900 3.737	1,896 3,797	1.53 2.53	28.92 96.00	-55,936.41 -188.198.88
44	GREEN	7	2000	1,939	1,951	2.57	50.20	-98,454.68
45 46	GREENUP HANCOCK	7 7	2000 2000	1,956 1,605	1,969 1,600	1.12 0.95	22.03 15.18	-42,091.00 -28,769.23
40	HARDIN	7	2000	2,678	2,644	2.21	58.54	-114,426.49
48	HARLAN HARRISON	7	2000	4,436	4,530	2.06	93.26	-181,987.46
49 50	HARRISON	7 7	2000 2000	2,217 3,444	2,232 3,545	2.42 2.30	53.99 81.64	-105,743.54 -159,738.92
51	HENDERSON	7	2000	2,524	2,549	0.61	15.45	-28,360.09
52 53	HENRY HICKMAN	7 7	2000 2000	2,963 1,398	3,061 1,389	2.71 1.51	83.02 20.96	-162,970.58 -40,521.48
54	HOPKINS	7	2000	4,095	4,105	0.88	36.15	-68,187.48
55 57	JACKSON JESSAMINE	7 7	2000 2000	1,208 3,396	1,229 3,439	2.15 2.69	26.45 92.68	-51,680.36 -181,916.04
58	JOHNSON	7	2000	6,358	6,289	0.51	31.90	-57,511.25
59 60	KENTON KNOTT	7 7	2000 2000	2,991 3,638	2,993 3,649	2.46 1.14	73.57 41.47	-144,155.98 -79,288.53
61	KNOX	7	2000	2,962	2,955	1.75	51.64	-100,320.23
62 63	LARUE	7 7	2000 2000	2,620 5,260	2,593 5,396	0.80 3.62	20.63 195.53	-38,667.64 -385,661.44
64	LAWRENCE	7	2000	3,374	3,384	2.17	73.55	-143,711.28
65 66	LEE LESLIE	7 7	2000 2000	2,778 2,510	2,747 2,519	-0.21 1.26	-5.80 31.64	14,348.69 -60,752.25
67	LETCHER	7	2000	3,254	3,275	0.99	32.49	-61,711.99
68 69	LEWIS LINCOLN	7 7	2000 2000	2,468 2,128	2,444 2,105	0.82 1.07	20.12 22.52	-37,803.28 -42,934.96
70	LIVINGSTON	7	2000	1,478	1,474	1.31	19.28	-37,086.73
71 72	LOGAN LYON	7 7	2000 2000	1,153 1,801	1,156 1,817	1.96 0.96	22.71 17.42	-44,272.22 -33,013.98
76	MADISON	7	2000	4,257	4,274	2.10	89.86	-175,450.74
77 78	MAGOFFIN MARION	7 7	2000 2000	2,101 1,815	2,093 1,820	1.34 1.56	28.13 28.41	-54,176.87 -54,997.40
79	MARSHALL	7	2000	3,639	3,640	0.25	9.22	-14,801.63
80 81	MARTIN MASON	7 7	2000 2000	2,084 1,404	2,183 1,384	0.01 1.83	0.20 25.32	1,785.27 -49,247.33
73	MCCRACKEN	7	2000	3,029	3,070	1.81	55.70	-108,330.16
74 75	MCCREARY	7 7	2000	2,369	2,402	2.37	57.02	-111,643.73
82	MCLEAN MEADE	7	2000 2000	2,737 3,396	2,732 3,452	1.38 1.99	37.84 68.56	-72,943.93 -133,676.33
83 84	MENIFEE	7 7	2000 2000	1,288	1,291 2,127	2.17	27.97	-54,651.33
85	MERCER METCALFE	7	2000	2,120 3,456	3,440	1.82 1.41	38.81 48.61	-75,487.13 -93,779.68
86 87	MONROE MONTGOMERY	7	2000 2000	3,441 3.356	3,403 3,417	0.32 3.15	10.80 107.65	-18,206.36 -211,877.17
88	MORGAN	7	2000	1,811	1,846	2.31	42.63	-83,405.17
89	MUHLENBERG	7	2000	6,128	6,151	1.00	61.71	-117,262.71
90 91	NELSON NICHOLAS	7 7	2000 2000	3,541 4,539	3,597 4,553	3.03 2.21	109.05 100.53	-214,509.43 -196,498.89
92	OHIO	7	2000	5,682	5,627	1.06	59.69	-113,748.49
93 94	OLDHAM OWEN	7 7	2000 2000	3,560 1,394	3,562 1,414	2.33 2.04	83.07 28.81	-162,587.75 -56,206.71
95	OWSLEY	7	2000	2,904	2.902	1.68	48.81	-94,708.47
96 97	PENDLETON PERRY	7 7	2000 2000	1,727 3,171	1,731 3,163	1.75 1.72	30.23 54.44	-58,721.49 -105,722.99
98	PIKE	7	2000	3,590	3,580	-0.16	-5.78	15,130.56
99 100	POWELL PULASKI	7 7	2000 2000	5,482 2,460	5,461 2,449	2.04 1.81	111.32 44.26	-217,187.09 -86,081.12
101	ROBERTSON	7	2000	1,122	1,123	1.92	21.51	-41,896.72
102 103	ROCKCASTLE ROWAN	7 7	2000 2000	1,754 3,163	1,791 3,203	1.99 2.26	35.59 72.38	-69,389.45 -141,550.86
104	RUSSELL	7	2000	3,417	3,395	1.38	46.89	-90,381.12
105 106	SCOTT SHELBY	7 7	2000 2000	3,801 2,422	3,889 2,459	2.77 3.53	107.73 86.84	-211,571.71 -171,219.10
107	SIMPSON	7	2000	2,129	2,105	2.95	62.12	-122,130.31
108 109	SPENCER TAYLOR	7 7	2000 2000	3,077 2,750	3,056 2,770	3.94 2.02	120.45 55.89	-237,850.44 -109,006.37
110	TODD	7	2000	2,402	2,361	0.88	20.69	-39,016.38
111 112	TRIGG TRIMBLE	7 7	2000 2000	2,007 3,541	2,024 3,535	1.59 3.98	32.13 140.72	-62,232.71 -277,913.26
113	UNION	7	2000	2,138	2,151	0.72	15.47	-28,797.79
114 115	WARREN WASHINGTON	7 7	2000 2000	4,562 1,360	4,605 1,386	2.10 1.34	96.78 18.50	-188,960.15 -35,620.80
116	WAYNE	7	2000	1,414	1,412	2.29	32.29	-63,160.57
117 118	WEBSTER WHITLEY	7 7	2000 2000	2,822 3,619	2,822 3,668	0.34 2.33	9.46 85.34	-16,100.77 -167,013.21
119	WOLFE	7	2000	1,292	1,305	1.98	25.80	-50,298.42
120	WOODFORD	7	2000	3,533	3,574	3.19	114.10	-224,620.79

Functional Class 08, Unweighted County Level Growth Rates

County Number	County Name ADAIR	Functional Class	Year 2000	Average ADT 770	Predicted 2000 ADT 780	2000 Growth (%) 1.25	Regression Slope 9.74	Regression Constant -18,699.39
2	ALLEN	8	2000	969	1,016	0.31	3.17	-5,320.59
3	ANDERSON	8	2000	784	786	1.57	12.30	-23,813.88
4	BALLARD	8	2000	364	362	0.32	1.17	-1,974.62
5	BARREN	8	2000	584	588	1.87	11.02	-21,460.50
6	BATH	8	2000	543	543	1.95	10.61	-20,679.88
7	BELL	8	2000	1,050	1.071	2.74	29.33	-57,584.82
8	BOONE	8	2000	1,248	1,264	2.63	33.20	-65,143.74
9	BOURBON	8	2000	952	953	2.38	22.70	-44,447.94
10	BOYD	8	2000	568	588	-3.72	-21.92	44,428.28
11	BOYLE	8	2000	751	742	1.79	13.29	-25,847.92
12	BRACKEN	8	2000	478	484	3.17	15.33	-30,179.10
13	BREATHITT	8	2000	526	525	1.18	6.19	-11,863.24
14	BRECKINRIDGE	8	2000	549	549	0.92	5.06	-9,578.36
15	BULLITT	8	2000	1,382	1,392	3.57	49.67	-97,949.37
16	BUTLER	8	2000	468	467	1.48	6.91	-13,343.36
17	CALDWELL	8	2000	358	358	0.95	3.41	-6,463.10
18	CALLOWAY	8	2000	696	702	1.84	12.95	-25,200.32
19	CAMPBELL	8	2000	764	795	3.98	31.65	-62,511.45
20	CARLISLE	8	2000	271	267	-0.08	-0.23	717.49
21	CARROLL	8	2000	479	489	3.70	18.08	-35,676.15
22 23	CARTER CASEY CHRISTIAN	8 8 8	2000 2000 2000	875 593 588	864 590 583	0.81 1.40 1.46	7.01 8.25 8.51	-13,147.30 -15,901.90 -16,430.78
24 25 26 27	CLARK CLAY CLINTON	8 8 8	2000 2000 2000	872 1,121 797	881 1,089 802	1.97 1.66 1.71	17.40 18.09 13.70	-33,913.70 -35,088.88 -26,598.52
28 29 30	CRITTENDEN CUMBERLAND DAVIESS	8 8 8	2000 2000 2000 2000	383 397 744	382 398 746	0.22 1.94 2.01	0.85 7.73 14.97	-1,308.33 -15,059.75 -29,201.75
31	EDMONSON	8	2000	614	580	2.45	14.18	-27,786.69
32	ELLIOTT	8	2000	390	395	2.46	9.72	-19,041.13
33	ESTILL	8	2000	934	937	2.49	23.33	-45,728.54
35	FLEMING	8	2000	667	680	2.51	17.04	-33,397.89
36	FLOYD	8	2000	2,857	2,865	1.49	42.76	-82,655.59
37	FRANKLIN	8	2000	889	902	1.83	16.54	-32,172.38
38	FULTON	8	2000	1,050	1,063	0.31	3.32	-5,574.05
39	GALLATIN	8	2000	708	702	4.35	30.51	-60,328.01
40	GARRARD	8	2000	521	536	3.39	18.20	-35,855.34
41	GRANT	8	2000	1,237	1,264	3.01	38.03	-74,798.90
42	GRAVES	8	2000	885	888	1.49	13.22	-25,550.35
43	GRAYSON	8	2000	1,138	1,150	2.66	30.59	-60,026.94
44	GREEN	8	2000	376	381	1.32	5.02	-9,661.17
45	GREENUP	8	2000	665	666	1.00	6.63	-12,601.52
46	HANCOCK	8	2000	684	679	1.89	12.81	-24,942.74
47	HARDIN	8	2000	1,598	1,585	2.92	46.32	-91,047.75
48	HARLAN	8	2000	2,489	2,559	0.99	25.36	-48,164.23
49	HARRISON	8	2000	687	683	2.84	19.39	-38,104.07
50	HART	8	2000	492	498	2.22	11.04	-21,581.16
51	HENDERSON	8	2000	576	586	1.51	8.83	-17,066.86
52	HENRY	8	2000	693	696	1.97	13.72	-26,749.28
53	HICKMAN	8	2000	317	317	0.48	1.51	-2,701.33
54	HOPKINS	8	2000	1,195	1,190	0.57	6.73	-12,278.69
55	JACKSON	8	2000	537	541	3.27	17.68	-34,814.05
56	JEFFERSON	8	2000	1,385	1,375	3.96	54.45	-107,524.95
57	JESSAMINE	8	2000	1,470	1,448	0.77	11.20	-20,945.75
58	JOHNSON	8	2000	1,428	1,424	1.19	16.96	-32,495.07
59	KENTON	8	2000	605	591	2.50	14.80	-29,007.89
60	KNOTT	8	2000	1,152	1,139	0.41	4.63	-8,123.07
61	KNOX	8	2000	1,481	1,464	3.21	47.04	-92,606.83
62	LARUE	8	2000	1,092	1,109	1.00	11.10	-21,091.30
63 64	LAUREL LAWRENCE	8 8 8	2000 2000 2000 2000	927 978 759	944 986 724	2.66 3.73 0.46	25.13 36.81	-49,311.90 -72,626.00
65 66 67	LEE LESLIE LETCHER	8 8	2000 2000	959 1,468	980 1,480	0.19 2.21	3.30 1.88 32.65	-5,882.75 -2,784.04 -63,829.22
68	LEWIS	8	2000	711	690	-1.10	-7.56	15,811.78
69	LINCOLN	8	2000	1,496	1,500	3.15	47.30	-93,107.12
70	LIVINGSTON	8	2000	520	524	1.59	8.32	-16,117.93
71	LOGAN	8	2000	583	585	1.48	8.65	-16,722.64
72	LYON	8	2000	547	527	0.89	4.68	-8,830.88
76	MADISON	8	2000	1,145	1,158	2.84	32.85	-64,534.95
77	MAGOFFIN	8	2000	541	526	1.88	9.91	-19,303.10
78	MARION	8	2000	991	976	1.93	18.86	-36,745.09
79	MARSHALL	8	2000	896	893	0.89	7.96	-15,023.38
80	MARTIN	8	2000	1,453	1,474	0.83	12.21	-22,953.09
81	MASON	8	2000	530	548	1.78	9.77	-18,995.26
73	MCCRACKEN	8	2000	970	983	1.77	17.34	-33,705.22
74	MCCREARY	8	2000	1,508	1,488	1.14	17.03	-32,566.06
75	MCLEAN	8	2000	554	555	1.69	9.35	-18,154.00
82	MEADE	8	2000	1,045	1,048	1.95	20.39	-39,734.05
83	MENIFEE	8	2000	449	431	0.46	2.00	-3,567.34
84	MERCER	8	2000	463	467	1.81	8.42	-16,383.01
85	METCALFE	8	2000	622	617	-0.14	-0.87	2,355.92
86 87	MONROE MONTGOMERY MORGAN	8 8	2000 2000 2000 2000	799 925 376	795 902	-0.04 1.65	-0.30 14.87	1,396.14 -28,835.31
88 89 90	MUHLENBERG NELSON	8 8 8	2000 2000	1,872 764	375 1,869 772	1.60 1.14 2.88	5.99 21.29 22.26	-11,603.94 -40,708.93 -43,742.53
91	NICHOLAS	8	2000	465	464	1.19	5.53	-10,591.92
92	OHIO	8	2000	781	786	1.15	9.08	-17,372.88
93	OLDHAM	8	2000	1,695	1,675	3.23	54.05	-106,424.30
94	OWEN	8	2000	448	454	2.03	9.22	-17,982.90
95	OWSLEY	8	2000	344	332	0.28	0.95	-1,559.99
96	PENDLETON	8	2000	946	948	2.72	25.82	-50,693.86
97	PERRY	8	2000	1,134	1,132	1.56	17.71	-34,283.38
98	PIKE	8	2000	1,944	1,936	0.86	16.70	-31,459.01
99	POWELL	8	2000	875	873	2.03	17.70	-34,531.13
100	PULASKI	8	2000	805	787	1.67	13.12	-25,451.60
101	ROBERTSON	8	2000	218	219	1.39	3.04	-5,869.66
102	ROCKCASTLE	8	2000	987	985	2.22	21.84	-42,689.47
103	ROWAN	8	2000	853	872	2.81	24.52	-48,160.57
104	RUSSELL	8	2000	1,477	1,477	1.82	26.91	-52,333.61
105	SCOTT	8	2000	1,223	1,253	3.89	48.80	-96,339.47
106	SHELBY	8	2000	742	763	2.67	20.34	-39,923.21
107	SIMPSON	8	2000	630	661	1.38	9.14	-17,613.33
108	SPENCER	8	2000	678	661	3.75	24.82	-48,985.08
109	TAYLOR	8	2000	736	746	1.97	14.72	-28,698.70
110	TODD	8	2000	592	596	2.01	11.99	-23,390.54
111	TRIGG	8	2000	604	600	1.19	7.15	-13,708.47
112	TRIMBLE	8	2000	554	527	-2.02	-10.64	21,798.65
113	UNION	8	2000	663	656	0.52	3.40	-6,149.67
114	WARREN	8	2000	1,298	1,278	2.80	35.74	-70,207.27
115	WASHINGTON	8	2000	940	954	1.23	11.72	-22,486.98
116	WAYNE	8	2000	560	565	1.35	7.64	-14,724.01
117	WEBSTER	8	2000	683	688	0.45	3.12	-5,543.08
118	WHITLEY	8	2000	1,209	1,208	1.90	22.98	-44,745.75
119	WOLFE	8	2000	468	471	0.64	3.03	-5,581.47
120	WOODFORD	8	2000	836	837	1.32	11.05	-21,263.68

County Number	County Name	Functional Class	Year	Average ADT	Predicted 2000 ADT	2000 Growth (%)	Regression Slope	Regression Constant
1 2	ADAIR ALLEN	9 9	2000 2000	406 356	410 352	4.47 0.50	18.34 1.77	-36,263.48 -3,185.38
3 4	ANDERSON BALLARD	9	2000 2000	290 306	286 304	4.96 -2.59	14.22 -7.87	-28,144.97 16,044.97
5 6	BARREN BATH	9	2000 2000	631 399	633 405	0.37 3.59	2.33 14.53	-4,021.78 -28,649.51
7	BELL BOONE	9	2000 2000	1,090 854	1,090 858	0.90 2.88	9.85 24.69	-18,601.41 -48,516.25
9 10	BOURBON BOYD	9	2000 2000	367 937	365 935	2.50 0.87	9.11 8.12	-17,858.71 -15,303.40
11 12	BOYLE BRACKEN	9	2000 2000	393 199	401 195	1.90 3.66	7.61 7.12	-14,826.98 -14,043.01
13 14	BREATHITT BRECKINRIDGE	9	2000 2000	538 1,719	535 1,735	1.52 0.62	8.13 10.69	-15,729.49 -19,648.96
15	BULLITT BUTLER	9	2000 2000	1,511 395	1,490 385	-0.71 0.67	-10.62 2.60	22,733.53 -4,809.30
16 17 18	CALDWELL CALLOWAY	9	2000 2000	127 520	128 536	-1.29 2.45	-1.64 13.16	3,416.89 -25,778.44
19 20	CAMPBELL CARLISLE	9	2000 2000	1,600 192	1,600 192	2.20 0.34	35.23 0.65	-68,850.11 -1,099.58
21 22	CARROLL CARTER	9	2000 2000	478 465	471 462	0.99 1.95	4.65 9.03	-8,822.47 -17,598.79
23 24 25	CASEY CHRISTIAN	9	2000 2000	553 363	534 367	-1.17 1.04	-6.23 3.83	13,002.26 -7,295.60
26	CLARK CLAY	9	2000 2000	1,390 884	1,377 879	-0.85 2.29	-11.65 20.14	24,670.35 -39,400.78
27 28	CLINTON CRITTENDEN	9	2000 2000	185 139	186 138	2.56 0.22	4.76 0.30	-9,342.26 -465.94
29 30 31	CUMBERLAND DAVIESS	9	2000 2000	214 605	213 596	0.63 1.07	1.33 6.39	-2,453.89 -12,193.21
31 32 33	EDMONSON ELLIOTT	9	2000 2000	287 175	286 173	1.21 0.13	3.47 0.22	-6,659.86 -270.27
34	ESTILL FAYETTE	9	2000 2000	680 1,498	684 1,498	0.91 1.18	6.22 17.73	-11,752.15 -33,953.72
35 36	FLEMING FLOYD	9	2000 2000	404 1,143	408 1,147	2.41 2.06	9.81 23.64	-19,219.72 -46,129.48
37 38	FRANKLIN FULTON	9	2000 2000	587 457	588 454	2.13 0.94	12.51 4.26	-24,436.22 -8,064.90
39 40	GALLATIN GARRARD	9	2000 2000	430 449	430 442	4.14 4.49	17.81 19.84	-35,188.28 -39,239.62
41 42	GRANT GRAVES	9	2000 2000	671 426	659 430	5.99 2.43	39.51 10.43	-78,364.18 -20,435.78
43 44	GRAYSON GREEN	9	2000 2000	315 648	308 639	3.46 -1.21	10.67 -7.76	-21,023.90 16,155.17
45 46	GREENUP HANCOCK	9	2000 2000	952 1,074	967 1,064	-0.68 1.51	-6.62 16.07	14,200.37 -31,080.57
47 48	HARDIN HARLAN	9	2000 2000	534 1,265	526 1,244	1.22 2.80	6.44 34.79	-12,344.17 -68,332.16
49 50	HARRISON HART	9	2000 2000	432 389	434 391	3.42 1.92	14.85 7.52	-29,267.58 -14,646.45
51 52	HENDERSON HENRY	9	2000 2000	393 334	397 337	2.29 1.90	9.09 6.41	-17,778.68 -12,491.06
53 54	HICKMAN HOPKINS	9	2000 2000	331 761	328 746	-0.18 4.32	-0.59 32.20	1,514.74 -63,647.17
55 56 57	JACKSON JEFFERSON JESSAMINE	9 9 9	2000 2000 2000	408 1,820	403 1,820	4.69 0.55 4.77	18.88 10.00 88.40	-37,356.24 -18,180.00
57 58 59	JOHNSON KENTON	9 9	2000 2000 2000	1,809 460 476	1,854 451 469	4.77 3.02 2.65	13.61 12.46	-174,953.89 -26,777.71 -24,441.82
59 60 61	KNOTT	9 9	2000 2000 2000	616 2,542	409 605 2,560	2.05 6.38 0.85	38.58 21.82	-24,441.02 -76,563.80 -41,078.46
62 63	LARUE	9 9	2000 2000 2000	2,542 218 666	2,500 215 664	1.00 3.74	2.15 24.81	-4,085.23 -48,964.10
63 64 65	LAURENCE	9 9	2000 2000 2000	764 208	769 206	2.65 2.53	20.40 5.22	-40,904.10 -40,023.17 -10,226.93
66 67	LESLIE LETCHER	9	2000 2000	481 822	480 827	4.70 -0.75	22.56 -6.19	-44,631.12 13,205.86
68 69	LEWIS	9 9	2000 2000 2000	255 841	271 844	0.98	2.66 -4.90	-5,041.33 10,650.66
70 71	LIVINGSTON	9	2000 2000	229 310	230 312	0.71	1.62 5.40	-3,018.87 -10,491.14
72 76	LYON MADISON	9	2000 2000	227 957	220 956	2.08 5.44	4.59 52.02	-8,961.41 -103,081.52
77 78	MAGOFFIN MARION	9	2000 2000	496 214	494 208	0.03	0.17 5.95	158.23 -11,696.52
79 80	MARSHALL	9	2000 2000	970 644	966 647	0.49 4.00	4.76 25.91	-8,557.32 -51,165.67
81 73	MASON MCCRACKEN	9	2000 2000	249 599	252 597	0.35 2.68	0.89	-1,525.14 -31,447.21
74 75	MCCREARY MCLEAN	9	2000 2000	518 298	518 296	0.09 1.20	0.45 3.56	-383.08 -6,825.77
82 83	MEADE MENIFEE	9	2000 2000	393 237	400 236	1.06 4.31	4.22 10.20	-8,049.08 -20,163.54
84 85	MERCER METCALFE	9	2000 2000	516 297	502 288	0.18 -0.42	0.90 -1.21	-1,305.05 2,711.60
86 87	MONROE MONTGOMERY	9 9	2000 2000	485 686	473 693	1.41 2.81	6.68 19.47	-12,884.67 -38,250.75
88 89	MORGAN MUHLENBERG	9	2000 2000	649 984	640 988	0.64 1.13	4.09 11.14	-7,533.77 -21,284.26
90 91	NELSON NICHOLAS	9	2000 2000	434 232	427 232	2.99 1.53	12.75 3.55	-25,080.68 -6,878.12
92 93	OHIO OLDHAM	9	2000 2000	927 1,950	932 1,950	2.39 3.06	22.22 59.73	-43,504.34 -117,509.04
94 95	OWEN OWSLEY	9	2000 2000	423 231	438 247	1.74 3.69	7.61 9.10	-14,782.64 -17,951.85
96 97	PENDLETON PERRY	9	2000 2000	418 598	419 604	3.85 2.57	16.12 15.51	-31,827.34 -30,408.43
98 99 100	PIKE POWELL PULASKI	9 9 9	2000 2000 2000	1,098 730 506	1,090 724 503	1.01 1.42 4.10	10.98 10.29	-20,878.14 -19,847.72 -40,729.73
101	ROBERTSON ROCKCASTLE	9 9	2000	118	118	1.66	20.62 1.95	-3,782.18
102 103 104	ROWAN RUSSELL	9 9	2000 2000 2000	434 262 366	436 262 367	3.12 2.13 3.61	13.57 5.57 13.25	-26,714.25 -10,875.75 -26,130.44
104 105 106	SCOTT SHELBY	9 9 9	2000 2000 2000	366 356 568	367 363 572	3.61 2.05 3.85	7.43	-20,130.44 -14,493.76 -43,499.14
106 107 108	SIMPSON SPENCER	9 9 9	2000 2000 2000	260 422	572 253 418	3.85 7.15 4.66	22.04 18.07 19.51	-43,499.14 -35,890.22 -38,591.74
109 110	TAYLOR TODD	9 9	2000 2000 2000	422 350 411	418 349 413	4.66 2.87 2.04	10.01 8.41	-36,591.74 -19,662.53 -16,398.49
110 111 112	TRIGG TRIMBLE	9 9	2000 2000 2000	312 287	413 311 286	2.04 2.17 0.61	6.76 1.75	-10,390.49 -13,202.36 -3,218.44
113 114	UNION WARREN	9 9	2000 2000	305 1,069	306 1,078	-2.43 2.39	-7.44 25.76	15,180.51 -50,438.57
115 116	WASHINGTON	9	2000 2000	225 735	225 739	2.78	6.24 17.56	-12,251.86 -34,377.89
117 118	WEBSTER WHITLEY	9	2000 2000	486 543	489 534	1.53 0.32	7.47	-14,456.52 -2,893.10
119 120	WOLFE WOODFORD	9 9	2000 2000	488 1,202	479 1,220	1.84 3.57	8.79 43.53	-17,110.74 -85,835.17

Functional Class 09, Unweighted County Level Growth Rates

County Number	County Name	Functional Class	Year	Average ADT	Predicted 2000 ADT	2000 Growth (%)	Regression Slope	Regression Constant
8	BOONE	11	2000	101,025	103,537	. 4.29	4,444.66	-8,785,792.48
15	BULLITT	11	2000	79,700	77,913	3.00	2,340.61	-4,603,299.39
19	CAMPBELL	11	2000	90,767	89,767	1.93	1,736.04	-3,382,311.26
24	CHRISTIAN	11	2000	25,300	24,657	4.52	1,114.29	-2,203,914.29
25	CLARK	11	2000	41,000	42,278	3.35	1,415.15	-2,788,024.85
34	FAYETTE	11	2000	54,338	55,047	3.14	1,730.15	-3,405,255.02
47	HARDIN	11	2000	47,050	48,715	4.10	1,997.88	-3,947,042.12
56	JEFFERSON	11	2000	94,464	97,740	3.07	3,002.49	-5,907,234.27
59	KENTON	11	2000	125,864	128,871	2.78	3,583.45	-7,038,022.27
63	LAUREL	11	2000	35,550	37,744	3.34	1,259.70	-2,481,650.30
76	MADISON	11	2000	44,000	44,594	2.77	1,233.03	-2,421,466.97
73	MCCRACKEN	11	2000	34,400	34,835	3.76	1,308.33	-2,581,831.67
105	SCOTT	11	2000	42,100	43,765	4.25	1,861.21	-3,678,658.79
114	WARREN	11	2000	44,500	42,620	2.24	953.33	-1,864,046.67
118	WHITLEY	11	2000	34,600	38,131	3.52	1,342.42	-2,646,717.58

Functional Class 11, Unweighted County Level Growth Rates

County Number	County Name	Functional Class	Year	Average ADT	Predicted 2000 ADT	2000 Growth (%)	Regression Slope	Regression Constant
5	BARREN	12	2000	6,920	7,173	3.46	247.94	-488,706.06
19	CAMPBELL	12	2000	48,800	40,049	1.23	490.91	-941,769.09
24	CHRISTIAN	12	2000	14,967	15,097	2.41	364.40	-713,712.86
30	DAVIESS	12	2000	18,814	18,930	3.15	597.03	-1,175,133.11
34	FAYETTE	12	2000	63,689	63,617	3.15	2,003.34	-3,943,066.94
42	GRAVES	12	2000	15,033	14,931	3.84	573.49	-1,132,053.57
47	HARDIN	12	2000	20,850	21,462	2.82	605.66	-1,189,851.01
51	HENDERSON	12	2000	25,300	24,356	0.67	162.02	-299,684.65
54	HOPKINS	12	2000	19,633	21,278	0.95	203.17	-385,071.43
56	JEFFERSON	12	2000	33,700	33,621	3.63	1,219.09	-2,404,560.91
90	NELSON	12	2000	9,590	10,237	4.89	500.67	-991,096.22
100	PULASKI	12	2000	10,400	9,824	-0.28	-27.52	64,854.48
114	WARREN	12	2000	11,740	11,697	4.29	501.43	-991,171.90

Functional Class 12, Unweighted County Level Growth Rates

|--|

County	County Name	Functional	Year	Average	Predicted	2000	Regression	Regression
Number		Class	0000	ADT	2000 ADT	Growth (%)	Slope	Constant
3	ANDERSON	14	2000	16,200	16,532	3.22	531.52	-1,046,498.48
5	BARREN	14	2000	15,311	15,397	2.04	313.37	-611,334.16
7	BELL	14	2000	26,225	25,593	2.38	608.48	-1,191,376.52
9	BOURBON	14	2000	8,743	8,600	1.62	138.94	-269,272.96
10	BOYD	14	2000	21,286	21,305	0.88	187.45	-353,595.48
11	BOYLE	14	2000	14,009	14,097	2.52	354.59	-695,079.74
15	BULLITT	14	2000	19,200	18,848	3.33	627.68	-1,236,505.66
18	CALLOWAY	14	2000	17,117	17,670	2.13	375.55	-733,429.74
19	CAMPBELL	14	2000	15,586	15,464	0.46	71.69	-127,922.58
24	CHRISTIAN	14	2000	17,047	16,820	2.36	397.48	-778,137.99
25	CLARK	14	2000	19,600	19,332	2.89	557.79	-1,096,244.21
30	DAVIESS	14	2000	14,713	14,765	0.91	134.61	-254,446.92
34	FAYETTE	14	2000	29,879	29,936	1.33	398.40	-766,868.92
37	FRANKLIN	14	2000	23,122	23,514	3.00	706.07	-1,388,625.70
42	GRAVES	14	2000	9,434	9,572	0.40	38.16	-66,754.84
45	GREENUP	14	2000	20,988	21,183	1.52	321.21	-621,241.29
47	HARDIN	14	2000	27,838	28,242	1.53	430.72	-833,198.90
49	HARRISON	14	2000	10,355	10,582	0.94	99.38	-188,175.87
51	HENDERSON	14	2000	26,767	26,910	0.91	246.06	-465,217.94
54	HOPKINS	14	2000	13,924	14,578	1.58	230.43	-446,288.14
56	JEFFERSON	14	2000	23,989	24,103	0.55	132.30	-240,494.31
57	JESSAMINE	14	2000	22,200	21,880	2.88	630.36	-1,238,847.64
59	KENTON	14	2000	12,060	11,812	-0.03	-3.85	19,514.09
61	KNOX	14	2000	26,700	27,178	4.63	1,257.19	-2,487,206.14
63	LAUREL	14	2000	20,000	19,946	2.82	561.74	-1,103,536.26
71	LOGAN	14	2000	8,785	8,815	1.96	172.53	-336,245.80
76	MADISON	14	2000	17,310	17,643	1.69	297.92	-578,207.22
78	MARION	14	2000	12,600	12,489	2.14	267.70	-522,918.07
81	MASON	14	2000	14,229	14,462	0.90	129.55	-244,632.34
73	MCCRACKEN	14	2000	16,207	16,443	0.28	45.80	-75,159.65
82	MEADE	14	2000	14,390	14,624	2.41	351.73	-688,830.27
84	MERCER	14	2000	17,818	18,014	2.05	369.83	-721,652.50
87	MONTGOMERY	14	2000	18,050	18,038	4.22	760.61	-1,503,173.64
90	NELSON	14	2000	14,942	14,873	4.22	235.61	-456,338.69
90 97	PERRY	14	2000	14,942	14,073	2.54	482.08	-945,143.64
98	PIKE	14	2000	27,722	27,857	2.66	741.89	-1,455,913.67
		14	2000				67.39	
100	PULASKI			24,020	23,614	0.29		-111,162.23
103	ROWAN	14	2000	19,691	18,891	2.15	405.77	-792,657.50
105	SCOTT	14	2000	12,313	12,640	4.17	527.68	-1,042,713.88
106	SHELBY	14	2000	18,985	19,200	3.01	577.14	-1,135,075.17
109	TAYLOR	14	2000	17,991	18,116	2.01	363.53	-708,941.14
114	WARREN	14	2000	19,581	19,618	2.03	399.01	-778,392.79
116	WAYNE	14	2000	10,455	10,628	5.23	555.76	-1,100,886.74
120	WOODFORD	14	2000	23,075	22,864	0.95	218.03	-413,196.97

Functional Class 16,	Unweighted County	y Level Growth Rates

County Number	County Name	Functional Class	Year	Average ADT	Predicted 2000 ADT	2000 Growth (%)	Regression Slope	Regression Constant
3	ANDERSON	16	2000	9,165	9,110	1 .28	116.87	-224,623.73
5	BARREN	16	2000	7,412	7,478	1.35	101.28	-195,091.10
7	BELL	16	2000	8,489	8,558	1.82	156.04	-303,520.04
8	BOONE	16	2000	18,570	18,316	2.16	395.48	-772,653.64
9	BOURBON	16	2000	7,635	7,653	1.33	102.03	-196,409.77
10	BOYD	16	2000	8,835	8,864	0.74	65.48	-122,104.25
11	BOYLE	16	2000	6,769	6,680	0.74	49.22	-91,769.84
15	BULLITT	16	2000	13,071	13,227	3.05	404.04	-794,853.96
17	CALDWELL	16	2000	6,181	6,268	1.19	74.30	-142,324.12
18	CALLOWAY	16	2000	9,334	9,510	1.99	189.14	-368,775.08
19	CAMPBELL	16	2000	5,982	5,903	0.05	2.69	524.16
24	CHRISTIAN	16	2000	8,688	8,633	0.91	78.96	-149,294.36
25	CLARK	16	2000	10,669	10,835	2.00	216.46	-422,093.29
30	DAVIESS	16	2000	8,279	8,197	1.21	98.81	-189,425.00
34	FAYETTE	16	2000	13,683	13,737	2.41	330.71	-647,689.55
37	FRANKLIN	16	2000	9,922	9,976	0.76	75.50	-141,018.34
42	GRAVES	16	2000	3,933	4,076	0.78	31.84	-59,600.73
45	GREENUP	16	2000	8,720	8,635	1.89	163.04	-317,448.14
47	HARDIN	16	2000	11,560	11,694	2.25	263.68	-515,675.77
49	HARRISON	16	2000	5,310	5,325	1.37	72.79	-140,260.44
51	HENDERSON	16	2000	8,952	8,919	1.76	157.17	-305,412.96
54	HOPKINS	16	2000	12,781	12,790	0.99	126.71	-240,626.42
56	JEFFERSON	16	2000	15,342	15,333	1.21	185.59	-355,846.34
57	JESSAMINE	16	2000	12,065	12,168	2.74	333.02	-653,874.35
59	KENTON	16	2000	13,466	13,152	0.92	121.65	-230,155.11
61	KNOX	16	2000	8,920	8,796	0.27	23.58	-38,355.22
63	LAUREL	16	2000	10,274	10,258	0.77	78.64	-147,023.03
71	LOGAN	16	2000	7,170	7,430	1.65	122.55	-237,671.32
76	MADISON	16	2000	8,822	9,016	1.91	171.91	-334,801.49
78	MARION	16	2000	5,458	5,278	-0.48	-25.23	55,746.66
81	MASON	16	2000	5,160	5,166	-0.67	-34.58	74,325.99
73	MCCRACKEN	16	2000	7,155	7,190	0.67	48.13	-89,073.58
82	MEADE	16	2000	3,780	4,325	6.10	263.70	-523,069.30
84	MERCER	16	2000	4,641	4,731	1.91	90.50	-176,258.98
87	MONTGOMERY	16	2000	7,078	7,172	1.23	88.16	-169,149.31
90	NELSON	16	2000	9,309	9,375	3.25	304.68	-599,983.85
93		16	2000	11,492	11,273	2.56	288.87	-566,472.73
97	PERRY	16	2000	8,043	8,171	1.10	89.99	-171,814.17
98 100	PIKE PULASKI	16 16	2000	9,558	9,541	0.55	52.80 28.57	-96,049.70
100 103	ROWAN	16	2000 2000	6,885 7,290	6,930 7,500	0.41 2.67	28.57 200.02	-50,209.11 -392,548.38
103	SCOTT	16	2000	11,228	11,250	0.94	200.02	-392,548.38
105	SHELBY	16	2000	8,590	8,688	0.94 3.36	291.76	-574,827.58
100	SIMPSON	16	2000	6,367	6,262	-0.10	-5.98	18,225.53
107	TAYLOR	16	2000	8,371	8,354	1.29	-5.90	-207,151.16
109	WARREN	16	2000	11,580	0,354 11,565	1.29	216.29	-421,019.57
114	WAYNE	16	2000	12,137	12,065	1.81	210.29	-424,974.85
118	WHITLEY	16	2000	10,569	10,594	1.87	198.46	-386,333.87
120	WOODFORD	16	2000	9,474	9,377	0.89	83.51	-157,636.21
120		10	2000	5,77	5,011	0.00	00.01	101,000.21

Functional Class 17, Unweighted County Level Growth Rates

3 ANDERSON 17 2000 5.554 5.740 2.42 188 2-71.90461 5 BARREN 17 2000 3.674 3.674 2.52 92.66 -181,644.91 8 BOONE 17 2000 1.1763 11.834 4.22 49.947 -997,110.74 9 BOURBON 17 2000 4.199 4.166 1.91 79.58 -154.997.17 18 BOYLE 17 2000 5.066 5.096 2.95 150.47 -295.843.53 17 CALDWELL 17 2000 5.066 5.096 2.95 150.47 -295.843.53 18 CALDWELL 17 2000 5.086 5.01 2.01 7.55.295.90 18 CALOWAY 17 2000 2.680 2.737 1.06 2.897 -55.295.90 20 DAVIESS 17 2000 4.692 4.92 2.12 1.65.3 2.89.135.04 21 <t< th=""><th>County Number</th><th>County Name</th><th>Functional Class</th><th>Year</th><th>Average ADT</th><th>Predicted 2000 ADT</th><th>2000 Growth (%)</th><th>Regression Slope</th><th>Regression Constant</th></t<>	County Number	County Name	Functional Class	Year	Average ADT	Predicted 2000 ADT	2000 Growth (%)	Regression Slope	Regression Constant
5 BARREN 17 2000 2.812 2.819 0.32 8.98 -15,150.06 7 BELL 17 2000 11.763 11.834 4.22 499.47 497.110.74 9 BOURBON 17 2000 2.331 2.349 1.49 34.91 -67.465.30 10 BOYD 17 2000 3.783 3.840 1.19 45.82 -67.802.32 15 BULITT 17 2000 5.066 5.096 2.95 150.47 -295.843.53 17 CALDWELL 17 2000 3.685 3.601 2.01 7.72.49 -141.380.43 18 CARMPELL 17 2000 3.842 3.8651 1.11 42.83 -81.788.37 25 CLARK 17 2000 4.946 4.003 0.81 3.241 -60.260.2 34 FAYETTE 17 2000 4.942 4.982 -171.90.75 3.23 -80.37.3 -33.246.32	3	ANDERSON	17	2000	5,554	5,740		138.82	-271,904.61
7 BELL 17 2000 3,674 3,674 2,52 92,66 -181,644 8 BOONE 17 2000 11,763 11,834 4,22 499,47 -987,110,74 9 BOURBON 17 2000 4,199 4,166 1.91 79,58 -154,997,17 11 BOYLE 17 2000 5,066 5,096 2.95 150,47 -295,843,53 15 BULLITT 17 2000 5,066 5,096 -0.34 -6.64 15,220,31 16 CALDWELL 17 2000 3,085 1.17 114,5 -155,923,31 2 CLARK 17 2000 2,680 2,737 1.06 2.897 -55,205,09 30 DAVIESS 17 2000 3,607 3,507 1.32 46,32 -89,135,04 2 FRANKLIN 17 2000 3,607 3,517 1.32 48,32 -40,354 45 GREENUP <td></td> <td>BARREN</td> <td>17</td> <td>2000</td> <td></td> <td></td> <td>0.32</td> <td>8.98</td> <td></td>		BARREN	17	2000			0.32	8.98	
8 BOONE 17 2000 11,763 11,834 422 49,947 987,110,74 9 BOURBON 17 2000 2,331 2,349 1,49 34,91 67,466,30 10 BOYLE 17 2000 3,783 3,840 1.19 45,82 47,802,33 15 BULITT 17 2000 1,986 1,956 -0.34 -6.64 15,228,20 18 CALDWAY 17 2000 3,508 3,601 2.01 72,49 -141,380,43 19 CAMPBELL 17 2000 3,842 3,865 1.11 42,83 -81,788,37 24 CHRISTIAN 17 2000 4,046 4,003 0,81 32,41 -60,826,02 35 CLARK 17 2000 4,046 4,003 0,81 32,41 -60,826,02 36 FULTON 17 2000 4,650 1,673 1,92 89,13,10,43 37 FRANKL		BELL	17	2000	3,674	3,674	2.52	92.66	-181,644.91
9 BOURBON 17 2000 2,331 2,349 1.49 34,91 -67,466.30 10 BOYD 17 2000 4,199 4,166 1.91 79,58 -154,997,17 11 BOYLE 17 2000 5,066 5,096 2.95 150,47 -298,843,53 15 BULLITT 17 2000 3,508 3,601 2.01 72,49 -141,380,43 19 CALDWELL 17 2000 6,989 6,970 1.17 81,788,37 25 CLARK 17 2000 2,680 2,737 1.06 28,97 -55,205.09 30 DAVIESS 17 2000 4,046 4,003 0.81 32,41 -60,826.02 34 FAYETTE 17 2000 4,046 4,063 0.81 32,41 -64,0826.02 35 TERANKLIN 17 2000 3,047 3,050 0.59 18,13 -33,218,03 46 GR	8	BOONE	17	2000	11,763	11,834	4.22	499.47	-987,110.74
10 BOYD 17 2000 4,193 4,166 191 79.58 -154.997.17 11 BOYLE 17 2000 3,783 3,840 1.19 45.82 -37,802.32 15 BULLITT 17 2000 1,966 -0.34 -6.64 152.28.20 18 CALLOWAY 17 2000 3,508 3,601 2.01 72.49 -141,380.43 19 CAMPBELL 17 2000 3,842 3,865 1.11 81.45 -155,923.31 24 CHRISTIAN 17 2000 4,046 4,003 0.81 32.41 -60.826.02 34 FAYETTE 17 2000 4,046 4,003 0.81 32.41 -60.826.02 34 FAYETTE 17 2000 4,69 4,67 -1.12 46.32 -21.03.54 42 GRAVES 17 2000 3,047 3,050 0.59 18.13 -33.218.03 45 GRE	9	BOURBON	17	2000	2,331		1.49	34.91	
15 BULLITT 17 2000 5,066 5,096 2,95 150,47 -295,843,53 17 CALDWELL 17 2000 1,986 1,956 -0.34 -6.64 15,228,20 18 CALDWAY 17 2000 6,989 6,970 1.17 81,45 -155,923,31 24 CHRISTIAN 17 2000 2,680 2,737 1.06 2.8,97 -55,205,09 30 DAVIESS 17 2000 4,942 4,982 2.12 105,53 -206,076,22 37 FRANKLIN 17 2000 3,607 3,507 1.32 46.32 -89,135,04 38 FULTON 17 2000 4,653 4,673 1.92 89,63 -174,596,81 47 HARNISON 17 2000 3,021 3,921 0,57 22,28 -40,645,05 49 HARRISON 17 2000 3,921 0,57 22,28 -40,645,05 54	10	BOYD	17	2000	4,199	4,166	1.91	79.58	
17 CALDWELL 17 2000 3,508 3,601 2.01 72.49 -141,380.43 18 CALLOWAY 17 2000 3,508 3,601 2.01 72.49 -141,380.43 19 CAMPBELL 17 2000 3,842 3,865 1.11 42.83 81,788.37 25 CLARK 17 2000 4,046 4,003 0.81 32.41 -60,826.02 30 DAVIESS 17 2000 4,992 4,982 2.12 105.53 -206,076.22 37 FRANKLIN 17 2000 3,607 3,507 1.32 46.32 -89,135.04 43 FULTON 17 2000 4,653 4,673 1.92 89.63 -174,596.81 47 HARDIN 17 2000 4,564 4,552 1.90 82.8 171,907.75 49 HARRISON 17 2000 3,921 3,931 0.40 93,956.76 54 HODKINS 17 2000 3,921 3,921 0.57 22.28 -40,645.	11	BOYLE	17	2000	3,783	3,840	1.19	45.82	-87,802.32
17 CALDWELL 17 2000 1,966 1,956 -0.34 -6.64 15,228.20 18 CALLOWAY 17 2000 3,508 3,601 2.01 72.49 -141,380.43 19 CAMPBELL 17 2000 3,842 3,865 1.11 42.83 -81,788.37 25 CLARK 17 2000 4,046 4,003 0.81 32.41 -60,825.09 30 DAVIESS 17 2000 4,992 4,982 2.12 105.53 -206,076.22 37 FRANKLIN 17 2000 3,507 3,507 1.32 46.32 489,135.04 44 GRAVES 17 2000 4,653 4,673 1.92 89.63 -174,596.81 47 HARDIN 17 2000 4,564 4,522 1.90 82.8 -171,907.75 49 HARRISON 17 2000 3,921 3,931 0.40 93,965.76 57 JESSAMINE 17 2000 3,921 0.57 22.28 -40,645.05	15	BULLITT	17	2000	5,066	5,096	2.95	150.47	
19 CAMPBELL 17 2000 6,989 6,970 1.17 81.45 -155,923.31 24 CHRISTIAN 17 2000 3,842 3,865 1.11 42.83 781,788.37 25 CLARK 17 2000 4,046 4,003 0.811 32.41 -60,826.02 34 FAYETTE 17 2000 4,992 4,982 2.12 105.53 -206,076.22 37 FRANKLIN 17 2000 3.607 3.507 1.32 46.32 -49,155.04 38 FULTON 17 2000 3.047 3.050 0.59 18.13 -33,218.03 43 GREENUP 17 2000 4.658 4.652 1.90 88.28 -171,907.75 49 HARISON 17 2000 3.921 3.921 0.57 22.28 40,645.05 51 HENDERSON 17 2000 3.921 3.921 0.57 2.23.31 -101,212.45	17	CALDWELL	17	2000	1,986	1,956	-0.34	-6.64	
24 CHRISTIAN 17 2000 3,842 3,865 1.11 42.83 -81,788.37 25 CLARK 17 2000 2,680 2,737 1.06 28.97 -55,205.09 30 DAVIESS 17 2000 4,992 4,982 2.12 105.53 -206,076.22 37 FRANKLIN 17 2000 3,697 3,507 1.32 46.32 -89,135.04 42 GRAVES 17 2000 3,047 3,050 0.59 18.13 -33,218.03 45 GREENUP 17 2000 4,654 4,673 1.92 89.63 -174,596.81 47 HARDIN 17 2000 3,295 3,311 0.40 13.30 -23,296.54 51 HENDERSON 17 2000 3,921 1.43 48.00 -93,056.76 54 HOPKINS 17 2000 3,047 3,050 1.71 52.13 -101,212.45 59	18	CALLOWAY	17	2000	3,508	3,601	2.01	72.49	-141,380.43
25 CLARK 17 2000 2,680 2,737 1.06 28.97 -55,205.09 30 DAVIESS 17 2000 4,046 4,003 0.81 32.41 -60,826.02 34 FAYETTE 17 2000 3,507 3,507 1.32 46.32 -89,135.04 38 FULTON 17 2000 3,047 3,050 0.59 18.13 -33,218.03 42 GRAVES 17 2000 4,653 4,662 1.90 88.28 -171,907.75 49 HARRISON 17 2000 3,921 3,921 0.57 22.28 -40,645.05 54 HOPKINS 17 2000 3,921 3,921 0.57 22.28 -40,645.05 55 JEFSAMINE 17 2000 7,014 6,972 1.49 103.71 -20,435.5 56 JEFFERSON 17 2000 5,738 5,630 0.99 55.52 -105,416.34	19	CAMPBELL	17	2000	6,989	6,970	1.17	81.45	-155,923.31
30 DAVIESS 17 2000 4,046 4,003 0.81 32.41 -60,826.02 34 FAYETTE 17 2000 4,992 4,982 2.12 105.53 -206,076.22 37 FRANKLIN 17 2000 3,507 3,507 -0.18 -0.82 2,103.54 42 GRAVES 17 2000 4,69 467 -0.18 -0.82 2,103.54 42 GRAVES 17 2000 4,653 4,673 1.99 88.28 -171,907.75 49 HARRISON 17 2000 3,295 3,311 0.40 13.30 -23,296.54 51 HENDERSON 17 2000 3,921 0.57 22.8 40,645.05 56 JEFFERSON 17 2000 3,047 3,050 1.71 2.01 3.521 -101,212.45 57 JESSAMINE 17 2000 5,73 5,630 0.99 55.2 -162,132.58 <	24	CHRISTIAN	17	2000	3,842	3,865	1.11	42.83	-81,788.37
34 FAYETTE 17 2000 4,992 4,982 2.12 105.53 -206,076.22 37 FRANKLIN 17 2000 3,507 3,507 1.32 46.32 -89,135.04 38 FULTON 17 2000 3,047 3,050 0.59 18.13 -33,218.03 45 GREENUP 17 2000 4,653 4,673 1.92 89.63 -174,596.81 47 HARDIN 17 2000 3,295 3,311 0.40 1.330 -23,296.54 49 HARRISON 17 2000 3,921 3,921 1.63 48.00 -93,056.76 54 HOPKINS 17 2000 3,047 3,050 1.71 52.01 2.00,453.55 57 JESSAMINE 17 2000 3,047 3,050 1.71 52.13 101,212.45 59 KENTON 17 2000 5,738 5,630 0.99 55.52 -105,416.34	25	CLARK	17	2000	2,680	2,737	1.06	28.97	-55,205.09
37 FRANKLIN 17 2000 3,507 3,507 1.32 46.32 -89,135.04 38 FULTON 17 2000 469 467 -0.18 -0.82 2,103.54 42 GRAVES 17 2000 4,653 4,673 1.92 89.63 -171.4596.81 47 HARDIN 17 2000 4,586 4,652 1.90 88.28 -171.907.75 49 HARRISON 17 2000 3,921 3,921 0.57 22.28 -40,645.05 54 HOPKINS 17 2000 3,921 3,921 0.57 22.28 -40,645.05 56 JEFFERSON 17 2000 7,014 6,972 1.49 103.71 -20.453.55 57 JESSAMINE 17 2000 5,738 5,630 0.99 5,552 -105,416.34 61 KNOX 17 2000 2,365 2,391 1.21 29.03 -55,572.8 <td< td=""><td>30</td><td>DAVIESS</td><td>17</td><td>2000</td><td>4,046</td><td>4,003</td><td>0.81</td><td>32.41</td><td>-60,826.02</td></td<>	30	DAVIESS	17	2000	4,046	4,003	0.81	32.41	-60,826.02
38 FULTON 17 2000 469 467 -0.18 -0.82 2,103,54 42 GRAVES 17 2000 3,047 3,050 0.59 18.13 -33,218,03 45 GREENUP 17 2000 4,553 4,673 1.92 89,63 -174,596,81 47 HARDIN 17 2000 3,295 3,311 0.40 13.30 -23,296,54 51 HENDERSON 17 2000 3,921 0.57 22.28 -40,645,05 56 JEFFERSON 17 2000 7,014 6,972 1.49 103,71 -20,453,55 57 JESSAMINE 17 2000 5,738 5,630 0.99 55,52 -105,416,34 61 KNOX 17 2000 1,978 1,976 1.62 32,05 62,132,58 63 LAUREL 17 2000 2,365 2,391 1.21 29,03 -55,675,28 71 LOGAN	34	FAYETTE	17	2000	4,992	4,982	2.12	105.53	-206,076.22
38 FULTON 17 2000 469 467 -0.18 -0.82 2,103.54 42 GRAVES 17 2000 3,047 3,050 0.59 18.13 -33,218.03 45 GREENUP 17 2000 4,653 4,673 1.92 89.63 -174,596.81 47 HARDIN 17 2000 3,295 3,311 0.40 13.30 -23,296.54 51 HENDERSON 17 2000 3,921 0.57 22.28 -40,645.05 56 JEFFERSON 17 2000 7,014 6,972 1.49 103.71 -20,453.55 57 JESSAMINE 17 2000 5,738 5,630 0.99 55.52 -105,416.34 61 KNOX 17 2000 1,978 1,976 1.62 32.05 62,132.58 63 LAUREL 17 2000 2,365 2,391 1.21 29.03 -55,675.28 71 LOGAN	37	FRANKLIN	17	2000			1.32	46.32	
45 GREENUP 17 2000 4,653 4,673 1.92 89.63 -174,596.81 47 HARDIN 17 2000 3,295 3,311 0.40 13.30 -23,296.54 49 HARRISON 17 2000 3,295 3,311 0.40 13.30 -23,296.54 51 HENDERSON 17 2000 3,921 3,921 0.57 22.28 -40,645.05 56 JEFFERSON 17 2000 3,047 3,050 1.71 52.13 -101,212.45 59 KENTON 17 2000 5,738 5,630 0.99 55.52 -105,416.34 61 KNOX 17 2000 1,578 1,976 1.62 32.05 -62,132.58 63 LAUREL 17 2000 1,579 1,663 -2.22 -36.67 75.50.84 71 LOGAN 17 2000 2,333 2,260 0.30 6.77 -11,27,05.66 <	38	FULTON	17	2000	469	467	-0.18	-0.82	2,103.54
47 HARDIN 17 2000 4,586 4,652 1.90 88.28 -171,907.75 49 HARRISON 17 2000 3,295 3,311 0.40 13.30 -23,296.54 51 HENDERSON 17 2000 3,921 0.57 22.28 -40,645.05 56 JEFFERSON 17 2000 3,047 3,050 1.71 52.13 -101,212.45 59 KENTON 17 2000 5,738 5,630 0.99 55.52 -105,416.34 61 KNOX 17 2000 1,678 1,976 1.62 32.05 -62,132.58 63 LAUREL 17 2000 1,579 1,663 -2.22 -36.96 75,590.84 76 MADISON 17 2000 2,333 2,260 0.30 6.77 -11,279.04 81 MASON 17 2000 2,333 2,260 0.30 6.77 -11,279.04 81 MA	42	GRAVES	17	2000	3,047	3,050	0.59	18.13	-33,218.03
49 HARRISON 17 2000 3,295 3,311 0.40 13.30 -23,296.54 51 HENDERSON 17 2000 2,907 2,942 1.63 48.00 -93,056.76 54 HOPKINS 17 2000 3,921 3,921 0.57 22.28 -40,645.05 56 JEFFERSON 17 2000 7,014 6,972 1.49 103.71 -200,453.55 57 JESSAMINE 17 2000 5,738 5,630 0.99 55.52 -105,416.34 61 KNOX 17 2000 1,978 1,976 1.62 32.05 -62,132.58 63 LAUREL 17 2000 2,365 2,391 1.21 29.03 -55,675.28 71 LOGAN 17 2000 2,333 2,260 0.30 6.77 -11,27,05.66 78 MARION 17 2000 2,333 2,260 0.30 6.77 -12,158,102.05	45	GREENUP	17	2000	4,653	4,673	1.92	89.63	-174,596.81
51 HENDERSON 17 2000 2,907 2,942 1.63 48.00 -93,056.76 54 HOPKINS 17 2000 3,921 3,921 0.57 22.28 -40,645.05 56 JEFFERSON 17 2000 7,014 6,972 1.49 103.71 -200,453.55 57 JESSAMINE 17 2000 3,047 3,050 1.71 52.13 -101.212.45 59 KENTON 17 2000 1,978 1,976 1.62 32.05 -62,132.58 63 LAUREL 17 2000 2,365 2,391 1.21 29.03 -55,675.28 71 LOGAN 17 2000 2,333 2,260 0.30 6.77 -11,279.04 81 MASON 17 2000 2,333 2,260 0.30 6.77 -11,279.04 81 MASON 17 2000 2,333 2,260 0.30 6.77 -12,705.66	47	HARDIN	17	2000	4,586	4,652	1.90	88.28	-171,907.75
54 HOPKINS 17 2000 3,921 3,921 0.57 22.28 -40,645.05 56 JEFFERSON 17 2000 7,014 6,972 1.49 103.71 -200,453.55 57 JESSAMINE 17 2000 3,047 3,050 1.71 52.13 -101,212.45 59 KENTON 17 2000 5,738 5,630 0.99 55.22 -105,416.34 61 KNOX 17 2000 2,365 2,391 1.21 29.03 -55,675.28 63 LAUREL 17 2000 1,579 1,663 -2.22 -36.96 75,590.84 76 MADISON 17 2000 2,331 2,260 0.30 6.77 -11,270.05.66 78 MARION 17 2000 2,331 2,260 1.90 44.73 -87,107.79 73 MCCRACKEN 17 2000 4,558 4,569 1.19 54.56 -104,556.00	49	HARRISON	17	2000	3,295	3,311	0.40	13.30	-23,296.54
56 JEFFERSON 17 2000 7,014 6,972 1.49 103.71 -200,453.55 57 JESSAMINE 17 2000 3,047 3,050 1.71 52.13 -101,212.45 59 KENTON 17 2000 5,738 5,630 0.99 55.52 -105,416.34 61 KNOX 17 2000 1,978 1,976 1.62 32.05 -62,132.58 63 LAUREL 17 2000 2,365 2,391 1.21 29.03 -55,675.28 71 LOGAN 17 2000 6,440 6,372 1.41 89.54 -172,705.66 78 MARION 17 2000 2,333 2,260 0.30 6.77 -11,279.04 81 MASON 17 2000 2,391 2,352 1.90 44.73 -87,107.79 73 MCCRACKEN 17 2000 4,234 4,394 1.64 160.06 -315,729.21	51	HENDERSON	17	2000	2,907	2,942	1.63	48.00	-93,056.76
57 JESSAMINE 17 2000 3,047 3,050 1.71 52.13 -101,212.45 59 KENTON 17 2000 5,738 5,630 0.99 55.52 -105,416.34 61 KNOX 17 2000 1,978 1,976 1.62 32.05 -62,132.58 63 LAUREL 17 2000 2,365 2,391 1.21 29.03 -55,675.28 71 LOGAN 17 2000 1,579 1,663 -2.22 -36.96 75,590.84 76 MADISON 17 2000 2,333 2,260 0.30 6.77 -11,27,05.66 78 MARION 17 2000 2,331 2,352 1.90 44.73 -87,107.79 73 MCCRACKEN 17 2000 4,558 4,569 1.19 54.56 -104,556.00 82 MEADE 17 2000 2,421 4,394 3.64 160.06 -315,729.21 87 MONTGOMERY 17 2000 2,425 2,206 1.80 39.72 </td <td>54</td> <td>HOPKINS</td> <td>17</td> <td>2000</td> <td>3,921</td> <td>3,921</td> <td>0.57</td> <td>22.28</td> <td>-40,645.05</td>	54	HOPKINS	17	2000	3,921	3,921	0.57	22.28	-40,645.05
59 KENTON 17 2000 5,738 5,630 0.99 55.52 -105,416.34 61 KNOX 17 2000 1,978 1,976 1.62 32.05 -62,132.58 63 LAUREL 17 2000 2,365 2,391 1.21 29.03 -55,675.28 71 LOGAN 17 2000 6,440 6,372 1.41 89.54 -172,705.66 78 MARION 17 2000 2,333 2,260 0.30 6.77 -11,279.04 81 MASON 17 2000 2,331 2,352 1.90 44.73 .87,107.79 73 MCCRACKEN 17 2000 4,558 4,569 1.19 54.56 -104,556.00 82 MEADE 17 2000 4,223 4,394 3.64 160.06 -315,729.21 87 MONTGOMERY 17 2000 2,045 2,066 -0.25 -5.10 12,265.43 9	56	JEFFERSON	17	2000	7,014	6,972	1.49	103.71	-200,453.55
61 KNOX 17 2000 1,978 1,976 1.62 32.05 -62,132.58 63 LAUREL 17 2000 2,365 2,391 1.21 29.03 -55,675.28 71 LOGAN 17 2000 1,579 1,663 -2.22 -36.96 75,590.84 76 MADISON 17 2000 2,333 2,260 0.30 6.77 -11,279.04 81 MASON 17 2000 2,331 2,352 1.90 44.73 -87,107.79 73 MCCRACKEN 17 2000 5,367 5,878 -1.29 -76.12 158,120.55 84 MERCER 17 2000 2,045 2,066 -0.25 -5.10 12,265.43 90 NELSON 17 2000 2,215 2,206 1.80 39.72 -77,236.84 93 OLDHAM 17 2000 3,651 -1.11 -39.13 81,788.08 100 PULASK	57	JESSAMINE	17	2000	3,047	3,050	1.71	52.13	-101,212.45
63 LAUREL 17 2000 2,365 2,391 1.21 29.03 -55,675.28 71 LOGAN 17 2000 1,579 1,663 -2.22 -36.96 75,590.84 76 MADISON 17 2000 6,440 6,372 1.41 89.54 -172,705.66 78 MARION 17 2000 2,333 2,260 0.30 6.77 -11,27.04 81 MASON 17 2000 2,391 2,352 1.90 44.73 -87,107.79 73 MCCRACKEN 17 2000 4,558 4,569 1.19 54.56 -104,556.00 82 MEADE 17 2000 5,367 5,878 -1.29 -76.12 158,120.55 84 MERCER 17 2000 2,045 2,066 -0.25 5.10 12,265.43 90 NELSON 17 2000 3,050 3,004 2.32 69.78 -136,564.70 97<	59	KENTON	17	2000	5,738	5,630	0.99	55.52	-105,416.34
71 LOGAN 17 2000 1,579 1,663 -2.22 -36.96 75,590.84 76 MADISON 17 2000 6,440 6,372 1.41 89.54 -172,705.66 78 MARION 17 2000 2,333 2,260 0.30 6.77 -11,279.04 81 MASON 17 2000 2,391 2,352 1.90 44.73 -87,107.79 73 MCCRACKEN 17 2000 4,558 4,569 1.19 54.56 -104,556.00 82 MEADE 17 2000 4,223 4,394 3.64 160.06 -315,729.21 87 MONTGOMERY 17 2000 2,045 2,066 -0.25 -5.10 12,265.43 90 NELSON 17 2000 3,050 3,004 2.32 69.78 -136,564.70 97 PERRY 17 2000 3,612 3,521 -1.11 -39.13 81,788.08 <		KNOX	17	2000	1,978	1,976		32.05	-62,132.58
76 MADISON 17 2000 6,440 6,372 1.41 89.54 -172,705.66 78 MARION 17 2000 2,333 2,260 0.30 6.77 -11,279.04 81 MASON 17 2000 2,391 2,352 1.90 44.73 -87,107.79 73 MCCRACKEN 17 2000 4,558 4,569 1.19 54.56 -104,556.00 82 MEADE 17 2000 5,367 5,878 -1.29 -76.12 158,120.55 84 MERCER 17 2000 2,045 2,066 -0.25 -5.10 12,265.43 90 NELSON 17 2000 2,215 2,206 1.80 39.72 -77,236.84 93 OLDHAM 17 2000 3,050 3,004 2.32 69.78 -136,564.70 97 PERRY 17 2000 3,612 3,521 -1.11 -39.13 81,788.08 1	63	LAUREL	17	2000	2,365	2,391	1.21	29.03	-55,675.28
78 MARION 17 2000 2,333 2,260 0.30 6.77 -11,279.04 81 MASON 17 2000 2,391 2,352 1.90 44.73 -87,107.79 73 MCCRACKEN 17 2000 4,558 4,569 1.19 54.56 -104,556.00 82 MEADE 17 2000 5,367 5,878 -1.29 -76.12 158,120.55 84 MERCER 17 2000 2,045 2,066 -0.25 -5.10 12,265.43 90 NELSON 17 2000 2,215 2,206 1.80 39.72 -77,236.84 93 OLDHAM 17 2000 3,050 3,004 2.32 69.78 -136,564.70 97 PERRY 17 2000 3,612 3,521 -1.11 -39.13 81,788.08 100 PULASKI 17 2000 3,612 3,521 -1.11 -39.13 81,788.08	71	LOGAN	17	2000	1,579	1,663	-2.22	-36.96	75,590.84
81 MASON 17 2000 2,391 2,352 1.90 44.73 -87,107.79 73 MCCRACKEN 17 2000 4,558 4,569 1.19 54.56 -104,556.00 82 MEADE 17 2000 5,367 5,878 -1.29 -76.12 158,120.55 84 MERCER 17 2000 2,045 2,066 -0.25 -5.10 12,265.43 90 NELSON 17 2000 2,215 2,206 1.80 39.72 -77,236.84 93 OLDHAM 17 2000 3,050 3,004 2.32 69.78 -136,564.70 97 PERRY 17 2000 3,612 3,521 -1.11 -39.13 81,788.08 100 PULASKI 17 2000 3,612 3,521 -1.11 -39.13 81,788.08 100 PULASKI 17 2000 3,717 3,668 0.66 24.23 -44,793.59 <				2000			1.41	89.54	-172,705.66
73MCCRACKEN1720004,5584,5691.1954.56-104,556.0082MEADE1720005,3675,878-1.29-76.12158,120.5584MERCER1720004,2234,3943.64160.06-315,729.2187MONTGOMERY1720002,0452,066-0.25-5.1012,265.4390NELSON1720002,2152,2061.8039.72-77,236.8493OLDHAM1720003,0503,0042.3269.78-136,564.7097PERRY1720004,8004,9762.47122.98-240,988.9398PIKE1720003,6123,521-1.11-39.1381,788.08100PULASKI1720003,7173,6680.6624.23-44,793.59105SCOTT1720003,7283,7181.4152.40-101,085.10107SIMPSON1720003,7613,730-0.11-4.2312,196.86114WARREN1720003,7613,730-0.11-4.2312,196.86114WARREN1720001,1741,047-10.84-113.50228,047.90118WHITLEY1720003,2733,2971.8561.03-118,760.87	78	MARION	17	2000	2,333	2,260	0.30	6.77	
82 MEADE 17 2000 5,367 5,878 -1.29 -76.12 158,120.55 84 MERCER 17 2000 4,223 4,394 3.64 160.06 -315,729.21 87 MONTGOMERY 17 2000 2,045 2,066 -0.25 -5.10 12,265.43 90 NELSON 17 2000 2,215 2,206 1.80 39.72 -77,236.84 93 OLDHAM 17 2000 3,050 3,004 2.32 69.78 -136,564.70 97 PERRY 17 2000 4,800 4,976 2.47 122.98 -240,988.93 98 PIKE 17 2000 3,612 3,521 -1.11 -39.13 81,788.08 100 PULASKI 17 2000 6,387 6,472 2.56 165.54 -324,600.10 103 ROWAN 17 2000 3,717 3,668 0.66 24.23 -44,793.59	81	MASON	17	2000	2,391	2,352	1.90	44.73	-87,107.79
84 MERCER 17 2000 4,223 4,394 3.64 160.06 -315,729.21 87 MONTGOMERY 17 2000 2,045 2,066 -0.25 -5.10 12,265.43 90 NELSON 17 2000 2,215 2,206 1.80 39.72 -77,236.84 93 OLDHAM 17 2000 3,050 3,004 2.32 69.78 -136,564.70 97 PERRY 17 2000 4,800 4,976 2.47 122.98 -240,988.93 98 PIKE 17 2000 3,612 3,521 -1.11 -39.13 81,788.08 100 PULASKI 17 2000 6,387 6,472 2.56 165.54 -324,600.10 103 ROWAN 17 2000 3,717 3,668 0.66 24.23 -44,793.59 105 SCOTT 17 2000 3,728 3,718 1.41 52.40 -101,085.10	73	MCCRACKEN	17	2000	4,558	4,569	1.19		-104,556.00
87 MONTGOMERY 17 2000 2,045 2,066 -0.25 -5.10 12,265.43 90 NELSON 17 2000 2,215 2,206 1.80 39.72 -77,236.84 93 OLDHAM 17 2000 3,050 3,004 2.32 69.78 -136,564.70 97 PERRY 17 2000 4,800 4,976 2.47 122.98 -240,988.93 98 PIKE 17 2000 3,612 3,521 -1.11 -39.13 81,788.08 100 PULASKI 17 2000 6,387 6,472 2.56 165.54 -324,600.10 103 ROWAN 17 2000 3,717 3,668 0.66 24.23 -44,793.59 105 SCOTT 17 2000 3,728 3,718 1.41 52.40 -101,085.10 107 SIMPSON 17 2000 3,761 3,730 -0.11 -4.23 12,196.86		MEADE		2000	5,367	5,878	-1.29	-76.12	158,120.55
90NELSON1720002,2152,2061.8039.72-77,236.8493OLDHAM1720003,0503,0042.3269.78-136,564.7097PERRY1720004,8004,9762.47122.98-240,988.9398PIKE1720003,6123,521-1.11-39.1381,788.08100PULASKI1720006,3876,4722.56165.54-324,600.10103ROWAN1720003,7173,6680.6624.23-44,793.59105SCOTT1720002,4052,3740.173.95-5,530.89106SHELBY1720003,7283,7181.4152.40-101,085.10107SIMPSON1720002,8962,8740.288.05-13,216.94109TAYLOR1720003,7613,730-0.11-4.2312,196.86114WARREN1720004,8595,0160.9949.45-93,885.80116WAYNE1720003,2733,2971.8561.03-118,760.87		MERCER			4,223	4,394			-315,729.21
93OLDHAM1720003,0503,0042.3269.78-136,564.7097PERRY1720004,8004,9762.47122.98-240,988.9398PIKE1720003,6123,521-1.11-39.1381,788.08100PULASKI1720006,3876,4722.56165.54-324,600.10103ROWAN1720003,7173,6680.6624.23-44,793.59105SCOTT1720002,4052,3740.173.95-5,530.89106SHELBY1720003,7283,7181.4152.40-101,085.10107SIMPSON1720003,7613,730-0.11-4.2312,196.86114WARREN1720004,8595,0160.9949.45-93,885.80116WAYNE1720003,2733,2971.8561.03-118,760.87	87		17			,			
97PERRY1720004,8004,9762.47122.98-240,988.9398PIKE1720003,6123,521-1.11-39.1381,788.08100PULASKI1720006,3876,4722.56165.54-324,600.10103ROWAN1720003,7173,6680.6624.23-44,793.59105SCOTT1720002,4052,3740.173.95-5,530.89106SHELBY1720003,7283,7181.4152.40-101,085.10107SIMPSON1720002,8962,8740.288.05-13,216.94109TAYLOR1720003,7613,730-0.11-4.2312,196.86114WARREN1720004,8595,0160.9949.45-93,885.80116WAYNE1720003,2733,2971.8561.03-118,760.87		NELSON				2,206			
98 PIKE 17 2000 3,612 3,521 -1.11 -39.13 81,788.08 100 PULASKI 17 2000 6,387 6,472 2.56 165.54 -324,600.10 103 ROWAN 17 2000 3,717 3,668 0.66 24.23 -44,793.59 105 SCOTT 17 2000 3,717 3,668 0.66 24.23 -44,793.59 106 SHELBY 17 2000 3,728 3,718 1.41 52.40 -101,085.10 107 SIMPSON 17 2000 2,896 2,874 0.28 8.05 -13,216.94 109 TAYLOR 17 2000 3,761 3,730 -0.11 -4.23 12,196.86 114 WARREN 17 2000 4,859 5,016 0.99 49.45 -93,885.80 116 WAYNE 17 2000 1,174 1,047 -10.84 -113.50 228,047.90									
100PULASKI1720006,3876,4722.56165.54-324,600.10103ROWAN1720003,7173,6680.6624.23-44,793.59105SCOTT1720002,4052,3740.173.95-5,530.89106SHELBY1720003,7283,7181.4152.40-101,085.10107SIMPSON1720002,8962,8740.288.05-13,216.94109TAYLOR1720003,7613,730-0.11-4.2312,196.86114WARREN1720004,8595,0160.9949.45-93,885.80116WAYNE1720001,1741,047-10.84-113.50228,047.90118WHITLEY1720003,2733,2971.8561.03-118,760.87									
103ROWAN1720003,7173,6680.6624.23-44,793.59105SCOTT1720002,4052,3740.173.95-5,530.89106SHELBY1720003,7283,7181.4152.40-101,085.10107SIMPSON1720002,8962,8740.288.05-13,216.94109TAYLOR1720003,7613,730-0.11-4.2312,196.86114WARREN1720004,8595,0160.9949.45-93,885.80116WAYNE1720001,1741,047-10.84-113.50228,047.90118WHITLEY1720003,2733,2971.8561.03-118,760.87									
105SCOTT1720002,4052,3740.173.95-5,530.89106SHELBY1720003,7283,7181.4152.40-101,085.10107SIMPSON1720002,8962,8740.288.05-13,216.94109TAYLOR1720003,7613,730-0.11-4.2312,196.86114WARREN1720004,8595,0160.9949.45-93,885.80116WAYNE1720001,1741,047-10.84-113.50228,047.90118WHITLEY1720003,2733,2971.8561.03-118,760.87									
106SHELBY1720003,7283,7181.4152.40-101,085.10107SIMPSON1720002,8962,8740.288.05-13,216.94109TAYLOR1720003,7613,730-0.11-4.2312,196.86114WARREN1720004,8595,0160.9949.45-93,885.80116WAYNE1720001,1741,047-10.84-113.50228,047.90118WHITLEY1720003,2733,2971.8561.03-118,760.87									
107SIMPSON1720002,8962,8740.288.05-13,216.94109TAYLOR1720003,7613,730-0.11-4.2312,196.86114WARREN1720004,8595,0160.9949.45-93,885.80116WAYNE1720001,1741,047-10.84-113.50228,047.90118WHITLEY1720003,2733,2971.8561.03-118,760.87		SCOTT							
109TAYLOR1720003,7613,730-0.11-4.2312,196.86114WARREN1720004,8595,0160.9949.45-93,885.80116WAYNE1720001,1741,047-10.84-113.50228,047.90118WHITLEY1720003,2733,2971.8561.03-118,760.87									
114WARREN1720004,8595,0160.9949.45-93,885.80116WAYNE1720001,1741,047-10.84-113.50228,047.90118WHITLEY1720003,2733,2971.8561.03-118,760.87									
116WAYNE1720001,1741,047-10.84-113.50228,047.90118WHITLEY1720003,2733,2971.8561.03-118,760.87						,			
118 WHITLEY 17 2000 3,273 3,297 1.85 61.03 -118,760.87									
120 WOODFORD 17 2000 4 494 4 561 3 24 147 62 -290 671 07									
	120	WOODFORD	17	2000	4,494	4,561	3.24	147.62	-290,671.07

|--|

County Number	County Name	Functional Class	Year	Average ADT	Predicted 2000 ADT	2000 Growth (%)	Regression Slope	Regression Constant
5	BARREN	19	2000	906	902	-5.03	-45.37	91,645.96
7	BELL	19	2000	1,713	1,789	3.81	68.21	-134,629.64
8	BOONE	19	2000	2,411	2,393	4.90	117.34	-232,287.19
9	BOURBON	19	2000	1,096	1,112	3.71	41.25	-81,387.58
10	BOYD	19	2000	1,990	1,960	0.50	9.74	-17,525.43
11	BOYLE	19	2000	745	728	3.71	27.00	-53,262.36
15	BULLITT	19	2000	4,790	4,633	2.28	105.50	-206,366.89
16	BUTLER	19 19	2000 2000	1,320 1,097	1,320 1,116	0.76	10.00 8.52	-18,680.00
17 19	CALDWELL CAMPBELL	19	2000	1,097	1,090	0.76 3.25	0.52 35.42	-15,917.36 -69,744.58
21	CARROLL	19	2000	2,850	2,844	2.92	83.00	-163,155.78
24	CHRISTIAN	19	2000	1,687	1,692	5.70	96.40	-191,108.03
25	CLARK	19	2000	1,142	1,114	3.07	34.21	-67,305.70
26	CLAY	19	2000	1,255	1,259	1.59	20.03	-38,807.98
27	CLINTON	19	2000	426	426	-2.61	-11.13	22,681.97
30	DAVIESS	19	2000	1,744	1,729	1.78	30.83	-59,933.33
33	ESTILL	19	2000	848	849	2.58	21.93	-43,018.16
34	FAYETTE	19	2000	2,110	2,122	2.27	48.15	-94,177.32
37	FRANKLIN	19	2000	680	658	5.71	37.59	-74,522.53
38 40	FULTON GARRARD	19 19	2000 2000	1,255 1,885	1,256 1,859	1.21 -3.18	15.23 -59.18	-29,197.56 120,225.96
40 41	GRANT	19	2000	2,615	2,789	-3.16	-59.18 293.47	-584,144.19
42	GRAVES	19	2000	390	384	-1.59	-6.13	12,644.36
43	GRAYSON	19	2000	526	546	3.88	21.17	-41,787.39
44	GREEN	19	2000	1,360	1,327	0.45	5.96	-10,589.56
45	GREENUP	19	2000	602	597	1.31	7.85	-15,104.54
47	HARDIN	19	2000	2,560	2,757	-1.44	-39.69	82,142.31
48	HARLAN	19	2000	143	142	-6.84	-9.68	19,508.27
49	HARRISON	19	2000	1,447	1,441	2.14	30.81	-60,169.50
51	HENDERSON	19	2000	1,146	1,136	4.17	47.34	-93,551.32
52	HENRY	19	2000	1,260	1,258	-1.19	-15.00	31,257.78
54 56	HOPKINS JEFFERSON	19 19	2000 2000	4,370 1,126	4,391 1,117	2.69 1.50	117.89 16.72	-231,392.79 -32,314.45
50 57	JESSAMINE	19	2000	1,783	1,795	1.30	34.00	-66,205.36
59	KENTON	19	2000	1,510	1,496	2.79	41.78	-82,064.51
61	KNOX	19	2000	808	807	7.16	57.78	-114,759.48
63	LAUREL	19	2000	1,078	1,074	3.74	40.18	-79,290.85
69	LINCOLN	19	2000	782	781	0.69	5.38	-9,976.93
71	LOGAN	19	2000	551	559	0.85	4.77	-8,974.16
76	MADISON	19	2000	969	961	4.58	43.98	-86,999.18
81	MASON	19	2000	878	879	3.14	27.58	-54,271.14
73	MCCRACKEN	19 19	2000 2000	900 194	894 204	4.41 0.17	39.45 0.35	-78,003.49 -496.27
74 84	MCCREARY MERCER	19	2000	765	204 763	3.76	28.69	-496.27 -56,617.73
87	MONTGOMERY	19	2000	1,578	1,583	1.94	30.74	-59,902.02
89	MUHLENBERG	19	2000	703	700	1.79	12.51	-24,325.46
90	NELSON	19	2000	425	406	-2.50	-10.14	20,695.24
97	PERRY	19	2000	486	469	1.21	5.65	-10,838.45
98	PIKE	19	2000	2,866	2,868	1.41	40.56	-78,260.84
100	PULASKI	19	2000	3,234	3,235	2.14	69.08	-134,931.24
103	ROWAN	19	2000	693	687	4.40	30.18	-59,674.07
105	SCOTT	19	2000	1,819	1,798	3.47	62.41	-123,018.61
107	SIMPSON	19 10	2000	621	606 423	6.58 2.57	39.88	-79,159.52
109 114	TAYLOR WARREN	19 19	2000 2000	433 1,275	423 1,233	3.57 3.89	15.08 47.94	-29,737.83 -94,639.17
114	WHITLEY	19	2000	861	852	2.95	25.17	-49,486.72
120	WOODFORD	19	2000	180	197	-8.04	-15.83	31,863.56

8.8 Appendix H – Corridor Interstate Growth Rates

Year	Average ADT	Weighted Average ADT	Predicted Weighted Average ADT	2000 Weighted ADT Growth Rate (%)	Regressio n Slope	Regression Constant
Jefferson	County MP 0	.0 - 23.974		2.83	2,320	-4,558,472
1991	62,817	58,358	61,056			
1992	68,325	64,749	63,376			
1993	75,023	66,486	65,697			
1994	76,462	68,979	68,017			
1995	77,229	70,610	70,337			
1996	76,393	70,772	72,657			
1997	82,757	76,621	74,977			
1998	87,229	79,312	77,298			
1999	86,321	78,837	79,618			
2000	87,386	80,247	81,938			
Shelby to	Scott MP 23.	974 - 71.0		3.24	1,158	-2,280,680
1991	25,642	25,874	25,329			
1992	26,300	26,980	26,487			
1993	26,483	27,503	27,646			
1994	25,792	26,385	28,804			
1995	30,242	30,976	29,962			
1996	30,569	31,124	31,120			
1997	31,785	32,489	32,279			
1998	32,923	33,291	33,437			
1999	34,969	35,842	34,595			
2000	34,462	34,949	35,753			
Fayette C	ounty MP 71.	0 - 89.48		2.58	847	-1,661,174
1991	26,050	25,443	25,143			
1992	25,550	25,524	25,990			
1993	26,850	26,665	26,837			
1994	26,900	26,636	27,684			
1995	32,500	33,292	28,531			
1996	28,767	27,853	29,378			
1997	27,867	26,559	30,225			
1998	31,667	30,999	31,072			
1999	33,400	33,898	31,919			
2000	32,867	32,680	32,766			
Clark to E	Boyd MP 89.48	8 - 191.507		2.97	551	-1,083,719
1991	15,236	13,474	13,579			
1992	15,440	14,000	14,131			
1993	16,360	14,767	14,682			
1994	17,660	15,836	15,233			
1995	17,686	15,669	15,784			
1996	18,050	15,998	16,335			
1997	18,714	16,689	16,886			
1998	19,723	17,419	17,437			
1999	20,614	18,319	17,988			
2000	20,632	18,425	18,540			
	ies MP 0.0 - 1			2.95	945	-1,857,131
1991	30,833	23,241	23,531			
1992	32,509	24,662	24,475			
1993	35,617	25,630	25,420			
1994	36,394	26,247	26,364			
1995	37,964	27,676	27,309			
1996	37,506	27,708	28,254			
1997	39,752	29,108	29,198			
1998	41,887	30,354	30,143			
1999	42,631	31,627	31,087			
2000	42,767	31,560	32,032			

I-64 Detailed Corridor Weighted ADT Growth Analysis

Year	Average ADT	Weighted Average ADT	Predicted Weighted Average ADT	2000 Weighted ADT Growth Rate (%)	Regression Slope	Regression Constant
Simpson to La	rue MP 0.0 - 78	3.661		1.85	660	-1,284,094
1991	26,968	27,374	29,747			
1992	30,558	31,878	30,407			
1993	33,332	34,646	31,067			
1994	29,468	29,686	31,727			
1995	32,260	32,724	32,386			
1996	31,730	32,121	33,046			
1997	32,995	33,500	33,706			
1998	33,715	33,977	34,366			
1999	35,105	35,201	35,026			
2000	35,635	36,055	35,686			
Hardin to Bulli	itt MP 78.661 - 1	123.18		3.75	1,982	-3,911,735
1991	34,420	34,658	34,979			
1992	37,070	36,614	36,962			
1993	38,373	39,881	38,944			
1994	40,782	39,650	40,926			
1995	43,958	41,841	42,908			
1996	47,083	46,185	44,891			
1997	48,992	48,183	46,873			
1998	51,569	50,493	48,855			
1999	52,177	50,567	50,838			
2000	52,454	50,926	52,820			
Jefferson MF	P 123.18 - 137.18			2.64	3,491	-6,850,012
1991	95,644	96,525	101,037			
1992	100,233	101,424	104,529			
1993	110,556	110,779	108,020			
1994	114,900	113,971	111,511			
1995	119,844	118,701	115,002			
1997	123,467	122,440	121,985			
1996	123,767	122,590	118,494			
1998	125,656	124,323	125,476			
1999	128,222	126,405	128,967			
2000	132,056	130,322	132,459			
	MP 0.0 - 137.18			2.49	1,268	-2,485,264
1991	45,195	37,496	39,610			
1992	48,774	41,439	40,878			
1993	52,574	45,077	42,146			
1994	52,374	42,258	43,414			
1995	54,910	44,708	44,683			
1996	56,427	45,982	45,951			
1997	57,333	47,417	47,219			
1998	58,943	48,634	48,487			
1999	60,343	49,573	49,755			
2000	61,502	50,582	51,023			

I-65 Detailed Corridor Weighted ADT Growth Analysis

Year	Average ADT	Weighted Average ADT	Predicted Weighted Average ADT	2000 Weighted ADT Growth Rate (%)	Regression Slope	Regression Constant
Jefferson N	MP 0.0 - 11.315		, troitago , ib i	2.50	1,421	-2,786,206
1991	43,300	41,961	43,957			
1992	51,900	49,387	45,378			
1993	50,100	48,972	46,800			
1994	46,750	44,519	48,221			
1995	49,900	47,967	49,643			
1996	51,850	51,568	51,064			
1997	50,475	49,749	52,486			
1998	58,000	57,625	53,907			
1999	55,550	55,362	55,329			
2000	55,300	56,424	56,750			
Oldham to G	allatin MP 11.31	5 - 69.89		3.90	1,208	-2,385,350
1991	22,036	20,272	20,123			
1992	23,657	21,723	21,331			
1994	25,071	22,994	23,747			
1993	24,386	23,802	22,539			
1996	26,029	24,327	26,164			
1995	26,221	24,382	24,955			
1997	29,140	27,107	27,372			
1998	31,673	29,304	28,580			
1999	32,307	30,548	29,788			
2000	32,940	31,137	30,996			
Boone MP	69.89 - 77.724			3.41	1,010	-1,989,547
1991	20,550	21,318	20,537			
1992	19,350	19,811	21,546			
1993	26,900	27,471	22,556			
1994	22,050	22,643	23,566			
1995	22,000	22,571	24,575			
1996	23,150	23,743	25,585			
1997	24,950	25,587	26,594			
1998	25,950	26,543	27,604			
1999	28,450	29,131	28,614			
2000	31,500	31,983	29,623			
All Counties	MP 0.0 - 77.724			3.46	1,196	-2,357,128
1991	26,140	23,683	23,836			
1992	28,875	25,731	25,032			
1994	29,105	26,233	27,424			
1995	30,535	27,780	28,620			
1993	29,780	28,019	26,228			
1996	30,905	28,411	29,816			
1997	32,805	30,250	31,011			
1998	36,143	33,149	32,207			
1999	36,367	34,017	33,403			
2000	37,062	34,904	34,599			

I-71 Detailed Corridor Weighted ADT Growth Analysis

Year	Average ADT	Weighted Average	Predicted	2000 Weighted	Regression	Regression
		ADT	Weighted Average	ADT Growth	Slope	Constant
			ADT	Rate (%)	•	
Whitley to Ma	adison MP 0.0 - 97.5	13		2.94	1,090	-2,143,117
			07.040	2.54	1,000	2,140,111
1991	28,811	27,498	27,249			
1992	30,705	29,162	28,339			
1993	31,105	29,423	29,429			
1994	31,168	29,238	30,519			
1995	33,526	31,527	31,609			
1996	34,295	31,925	32,699			
1997		33,544				
	35,979		33,790			
1998	38,721	36,060	34,880			
1999	38,637	36,767	35,970			
2000	38,405	36,401	37,060			
Fayette MP	97.443 - 120.792			3.38	2,054	-4,047,406
1991	43,322	43,639	42,309		,	, ,
1992	45,756	45,659	44,363			
1993	46,350	46,304	46,417			
1994	46,830	46,664	48,471			
1995	48,440	48,208	50,525			
1996	52,410	52,253	52,580			
1997	55,560	54,636	54,634			
1998	57,100	56,114	56,688			
1999	63,120	62,074	58,742			
2000						
	60,780	59,974	60,796			
	nt MP 120.792 - 166.2			4.97	2,257	-4,468,205
1991	27,570	27,263	25,131			
1992	28,390	27,967	27,388			
1993	28,640	28,683	29,644			
1994	30,730	29,773	31,901			
1995						
	33,400	32,531	34,158			
1996	36,610	35,412	36,415			
1997	41,000	40,349	38,672			
1998	42,950	42,001	40,929			
1999	45,160	43,824	43,185			
2000	44,920	45,061	45,442			
Boone to Ker	nton MP 166.263 - 19	91.777		3.24	3,473	-6,838,748
1991	91,788	76,463	75,851	0.2 .	0,0	0,000,000
1992	95,794	79,274	79,324			
1993	90,794	77,579	82,797			
1994	96,112	82,535	86,269			
1995	107,811	91,581	89,742			
1996	115,624	104,236	93,215			
1997	111,250	96,451	96,688			
1998	115,444	101,507	100,161			
1999	116,811	102,189	103,634			
2000	116,150	102,189	105,034			
		102,972	107,107			. ==
	MP 0.0 - 191.777			3.70	1,911	-3,770,625
1991	49,659	35,246	34,507			
1992	52,070	36,846	36,418			
1993	51,507	37,715	38,329			
1994	53,602	38,589	40,240			
1995	59,579	42,047	42,151			
1995						
	62,330	44,177	44,063			
1997	64,065	46,414	45,974			
1998	66,916	48,938	47,885			
1999	68,763	50,567	49,796			
2000	68,025	50,532	51,707			
	,	,	. , .			

I-75 Detailed Corridor	Weighted ADT	Growth Anal	ysis